首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.  相似文献   

2.
PBX is a member of the three amino acid loop extension (TALE) class of homeodomains. PBX binds DNA cooperatively with HOX homeodomain proteins that contain a conserved YPWM motif. The amino acids immediately C-terminal to the PBX homeodomain increase the affinity of the homeodomain for its DNA site and HOX proteins. We have determined the structure of the free PBX homeodomain using NMR spectroscopy. Both the PBX homeodomain and the extended PBX homeodomain make identical contacts with a 5'-TGAT-3' DNA site and a YPWM peptide. A fourth alpha-helix, which forms upon binding to DNA, stabilizes the extended PBX structure. Variations in DNA sequence selectivity of heterodimeric PBX-HOX complexes depend on the HOX partner; however, a comparison of five different HOX-derived YPWM peptides showed that each bound to PBX in the same way, differing only in the strength of the association.  相似文献   

3.
4.
Arista versus tarsus determination is well investigated in Drosophila, yet it remains unresolved whether Antennapedia (ANTP) cell autonomously or noncell autonomously determines tarsus identity and whether Sex combs reduced (SCR) is the HOX protein required for normal tarsus determination. Three observations rule out a cell autonomous role for ANTP in tarsus determination. (i) Clonal ectopic overexpression of ANTP did not repress the expression of the arista determining protein Homothorax (HTH) in early 3rd stadium antennal imaginal discs. (ii) Clonal ectopic expression of ANTP did not transform the arista to a tarsus. (iii) Ectopic overexpression of ANTP, Labial (LAB), Deformed (DFD), SCR, Ultrabithorax (UBX), Abdominal-A (ABD-A), or Abdominal-B (ABD-B), using the dppGAL4 driver, resulted in arista-to-tarsus transformations, and repressed HTH/Extradenticle (EXD) activity noncell autonomously in early 3rd stadium antennal imaginal discs. SCR may not be the HOX protein required for normal tarsus determination, because co-ectopic expression of Proboscipedia (PB) inhibited the arista-to-tarsus transformations induced by ectopic expression of DFD, SCR, ANTP, UBX, ABD-A, and ABD-B. The proposal that SCR is the HOX protein required for normal tarsus determination is dependent on SCR being the sole target of PB suppression, which is not the case. Therefore, the possibility exists that normal tarsus determination is HOX independent.  相似文献   

5.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

6.
7.
8.
Some Drosophila Hox-complex members, including the segmentation gene fushi tarazu (Dm-ftz), have nonhomeotic functions. Characteristic expression in other arthropods supports an ancestral homeotic role for ftz, indicating that ftz function changed during arthropod evolution. Dm-Ftz segmentation function depends on interaction with ftz-F1 via an LXXLL motif and homeodomain N-terminal arm. Hox proteins interact with the cofactor Extradenticle (Exd) via their YPWM motif. Previously, we found that Dm-ftz mediates segmentation but not homeosis, whereas orthologs from grasshopper (Sg-ftz) and beetle (Tc-Ftz), both containing a YPWM motif, have homeotic function. Tc-Ftz, which unlike Sg-Ftz contains an LXXLL motif, displays stronger segmentation function than Sg-Ftz. Cofactor-interaction motifs were mutated in Dm-Ftz and Tc-Ftz and effects were evaluated in Drosophila to assess how these motifs contributed to Ftz evolution. Addition of YPWM to Dm-Ftz confers weak homeotic function, which is increased by simultaneous LXXLL mutation. LXXLL is required for strong segmentation function, which is unimpeded by the YPWM, suggesting that acquisition of LXXLL specialized Ftz for segmentation. Strengthening the Ftz/Ftz-F1 interaction led to degeneration of the YPWM and loss of homeotic activity. Thus, small changes in protein sequence can result in a qualitative switch in function during evolution.  相似文献   

9.
10.
Fragments of the imaginal wing disc of Drosophila melanogaster were cultured in adult hosts before transfer to larvae for metamorphosis. Transdetermination occurred only after at least 2 weeks of culture in vivo, producing structures of the leg, antenna, head, and thoracic spiracle. Details of the transdetermined structures and their locations with respect to normal wing disc structures are reported. We present evidence suggesting that regulation can occur between the wing and the second leg imaginal discs, and we propose that many transdeterminations which involve neighboring discs may result from such interdisc regulation.  相似文献   

11.
12.
13.
Nuclear Dbf2-related (NDR) protein kinases are a family of AGC group kinases that are involved in the regulation of cell division and cell morphology. We describe the cloning and characterization of the human and mouse NDR2, a second mammalian isoform of NDR protein kinase. NDR1 and NDR2 share 86% amino acid identity and are highly conserved between human and mouse. However, they differ in expression pattern; mouse Ndr1 is expressed mainly in spleen, lung and thymus, whereas mouse Ndr2 shows highest expression in the gastrointestinal tract. NDR2 is potently activated in cells following treatment with the protein phosphatase 2A inhibitor okadaic acid, which also results in phosphorylation on the activation segment residue Ser-282 and the hydrophobic motif residue Thr-442. We show that Ser-282 becomes autophosphorylated in vivo, whereas Thr-442 is targeted by an upstream kinase. This phosphorylation can be mimicked by replacing the hydrophobic motif of NDR2 with a PRK2-derived sequence, resulting in a constitutively active kinase. Similar to NDR1, the autophosphorylation of NDR2 protein kinase was stimulated in vitro by S100B, an EF-hand Ca(2+)-binding protein of the S100 family, suggesting that the two isoforms are regulated by the same mechanisms. Further we show a predominant cytoplasmic localization of ectopically expressed NDR2.  相似文献   

14.
The cDNA coding for calf filensin, a membrane-associated protein of the lens fiber cells, has been cloned and sequenced. The predicted 755- amino acid-long open reading frame shows primary and secondary structure similarity to intermediate filament (IF) proteins. Filensin can be divided into an NH2-terminal domain (head) of 38 amino acids, a middle domain (rod) of 279 amino acids, and a COOH-terminal domain (tail) of 438 amino acids. The head domain contains a di- arginine/aromatic amino acid motif which is also found in the head domains of various intermediate filament proteins and includes a potential protein kinase A phosphorylation site. By multiple alignment to all known IF protein sequences, the filensin rod, which is the shortest among IF proteins, can be subdivided into three subdomains (coils 1a, 1b, and 2). A 29 amino acid truncation in the coil 2 region accounts for the smaller size of this domain. The filensin tail contains 6 1/2 tandem repeats which match analogous motifs of mammalian neurofilament M and H proteins. We suggest that filensin is a novel IF protein which does not conform to any of the previously described classes. Purified filensin fails to form regular filaments in vitro (Merdes, A., M. Brunkener, H. Horstmann, and S. D. Georgatos. 1991. J. Cell Biol. 115:397-410), probably due to the missing segment in the coil 2 region. Participation of filensin in a filamentous network in vivo may be facilitated by an assembly partner.  相似文献   

15.
Yan H  Liao X 《Biophysical journal》2003,85(5):3248-3254
The hepatocyte nuclear factor (HNF)-3 homologous DNA binding domain is a highly conserved motif that contains a well-folded helix-turn-helix motif and two highly dynamic wings. Although the function and the properties of this motif have been intensively studied, the role of the internal wing (wing 1) is not well understood. In this study, amino acid substitutions were introduced into wing 1 of a conserved HNF-3 homologous protein, Genesis, and heteronuclear NMR, circular dichroism, DNA gel-shift assay, and fluorescent methods were employed to study and compare the properties of both wild-type and variant Genesis proteins. The data indicate that even though the substitutions are located on a dynamic wing outside the hydrophobic core sequences, they still globally influence biophysical properties of DNA-free Genesis and its DNA complex.  相似文献   

16.
Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development.Subject terms: Cell growth, Organogenesis  相似文献   

17.
Accumulation of voltage-gated sodium channel Nav1 at the axon initial segment (AIS), results from a direct interaction with ankyrin G. This interaction is regulated in vitro by the protein kinase CK2, which is also highly enriched at the AIS. Here, using phosphospecific antibodies and inhibition/depletion approaches, we showed that Nav1 channels are phosphorylated in vivo in their ankyrin-binding motif. Moreover, we observed that CK2 accumulation at the AIS depends on expression of Nav1 channels, with which CK2 forms tight complexes. Thus, the CK2–Nav1 interaction is likely to initiate an important regulatory mechanism to finely control Nav1 phosphorylation and, consequently, neuronal excitability.  相似文献   

18.
19.
20.
Many alpha-helical proteins that form two-chain coiled coils possess a 13-residue trigger motif that seems to be required for the stability of the coiled coil. However, as currently defined, the motif is absent from intermediate filament (IF) protein chains, which nevertheless form segmented two-chain coiled coils. In the present work, we have searched for and identified two regions in IF chains that are essential for the stability necessary for the formation of coiled-coil molecules and thus may function as trigger motifs. We made a series of point substitutions with the keratin 5/keratin 14 IF system. Combinations of the wild-type and mutant chains were assembled in vitro and in vivo, and the stabilities of two-chain (one-molecule) and two-molecule assemblies were examined with use of a urea disassembly assay. Our new data document that there is a region located between residues 100 and 113 of the 2B rod domain segment that is absolutely required for molecular stability and IF assembly. This potential trigger motif differs slightly from the consensus in having an Asp residue at position 4 (instead of a Glu) and a Thr residue at position 9 (instead of a charged residue), but there is an absolute requirement for a Glu residue at position 6. Because these 13 residues are highly conserved, it seems possible that this motif functions in all IF chains. Likewise, by testing keratin IF with substitutions in both chains, we identified a second potential trigger motif between residues 79 and 91 of the 1B rod domain segment, which may also be conserved in all IF chains. However, we were unable to find a trigger motif in the 1A rod domain segment. In addition, many other point substitutions had little detectable effect on IF assembly, except for the conserved Lys-23 residue of the 2B rod domain segment. Cross-linking and modeling studies revealed that Lys-23 may lie very close to Glu-106 when two molecules are aligned in the A(22) mode. Thus, the Glu-106 residue may have a dual role in IF structure: it may participate in trigger formation to afford special stability to the two-chain coiled-coil molecule, and it may participate in stabilization of the two-molecule hierarchical stage of IF structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号