首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-dependent Ca2+ currents appear to be involved in the actions of hormones that regulate pituitary secretion. In order to investigate modulation of Ca2+ currents by release-inducing and release-inhibiting hormones, we performed whole-cell clamp experiments in the pituitary cell line GH3. The resting potential was approximately -40 mV; spontaneous action potentials were observed in the majority of cells. Superfusion of cells with the stimulatory hormone, LHRH, depolarized the plasma membrane to approximately -10 mV, whereas the inhibitory hormone, somatostatin, caused hyperpolarization to approximately -60 mV; both hormones suppressed spontaneous action potentials. Under voltage clamp conditions, GH3 cells exhibited slowly and fast inactivating Ca2+ currents. LHRH increased whereas somatostatin decreased the slowly inactivating currents; fast inactivating currents were not affected by these hormones. The stimulatory effect of LHRH was not mimicked by intracellularly applied cAMP. In contrast to vasoactive intestinal peptide and forskolin, LHRH did not activate adenylate cyclase in membranes of GH3 cells, but rather appeared to cause inhibition of the enzyme. Hormonal stimulation and inhibition of inward currents were abolished by pretreatment of the cells with pertussis toxin. In membranes of GH3 cells, we identified a pertussis toxin-sensitive G-protein of the Gi-type and Go. We conclude that LHRH and somatostatin modulate voltage-dependent Ca2+ currents via cAMP-independent mechanisms involving pertussis toxin-sensitive G-proteins. The occurrence of both pertussis toxin-sensitive hormonal stimulation and inhibition of voltage-dependent Ca2+ currents in one cell type suggest that these opposite regulations are mediated by distinct G-proteins.  相似文献   

2.
The role of extracellular Ca2+ in pituitary hormone release was studied in primary cultures of rat anterior pituitary cells. The basal levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH), and adrenocorticotropin (ACTH) secretion were independent of extracellular Ca2+ concentration ([Ca2+]e). In contrast, the basal levels of growth hormone (GH) and prolactin (PRL) release showed dose-dependent increases with elevation of [Ca2+]e, and were abolished by Ca2+-channel antagonists. Under Ca2+-deficient conditions, BaCl2 mimicked the effects of calcium on PRL and GH release but with a marked increase in potency, and also increased basal LH and FSH release in a dose-dependent manner. In the presence of normal [Ca2+]e, depolarization with K+ maximally increased cytosolic [Ca2+] ([Ca2+]i) from 100 to 185 nM and elevated LH, FSH, TSH, ACTH, PRL, and GH release by 7-, 5-, 4-, 3-, 2-, and 1.5-fold, respectively. These effects of KCl were abolished in Ca2+-deficient medium or in the presence of the Ca2+-channel antagonist, Co2+, and were diminished by the dihydropyridine Ca2+-channel antagonist, nifedipine. The Ca2+-channel agonist BK 8644 (100 nM) enhanced the hormone-releasing actions of 25 mM KCl upon PRL, LH, FSH, GH, TSH, and ACTH by 2.3-, 2.0-, 1.8-, 1.7-, 1.6-, and 1.4-fold, respectively. The dose- and voltage-dependent actions of BK 8644 were specific for individual cell types; BK 8644 enhanced GH, PRL, TSH, LH, and ACTH secretion in the absence of any depolarizing stimulus, with ED50 values of 8, 10, 150, 200, and 400 nM, respectively. However, in the presence of 50 mM KCl, the ED50 values for BK 8644 were 1.5, 2, 3, 5, and 7 nM for GH, PRL, ACTH, TSH, and LH, respectively. [3H]BK 8644 bound specifically to pituitary membranes with Kd values of 0.8 nM and concentrations of about 900 channels per cell. These observations provide evidence for the presence and participation of voltage-sensitive calcium channels in the secretion of all five populations of anterior pituitary cells.  相似文献   

3.
4.
5.
The neurosecretory anterior pituitary GH(4)C(1) cells exhibit the high voltage-activated dihydropyridine-sensitive L-type and the low voltage-activated T-type calcium currents. The activity of L-type calcium channels is tightly coupled to secretion of prolactin and other hormones in these cells. Depolarization induced by elevated extracellular K(+) reduces the dihydropyridine (+)-[(3)H]PN200-110 binding site density and (45)Ca(2+) uptake in these cells (). This study presents a functional analysis by electrophysiological techniques of short term regulation of L-type Ca(2+) channels in GH(4)C(1) cells by membrane depolarization. Depolarization of GH(4)C(1) cells by 50 mm K(+) rapidly reduced the barium currents through L-type calcium channels by approximately 70% and shifted the voltage dependence of activation by 10 mV to more depolarized potentials. Down-regulation depended on the strength of the depolarizing stimuli and was reversible. The currents recovered to near control levels on repolarization. Down-regulation of the calcium channel currents was calcium-dependent but may not have been due to excessive accumulation of intracellular calcium. Membrane depolarization by voltage clamping and by veratridine also produced a down-regulation of calcium channel currents. The down-regulation of the currents had an autocrine component. This study reveals a calcium-dependent down-regulation of the L-type calcium channel currents by depolarization.  相似文献   

6.
J L Bossu  A Elhamdani  A Feltz 《FEBS letters》1992,299(3):239-242
Confluent bovine capillary endothelial cells display, when examined for voltage-dependent calcium entries using cell-attached channel recordings, two types of Ca2+ channels (4 and 23.5 pS in 110 mM Ba2+) both sensitive to the dihydropyridine Ca agonist BAY K 8644. In contrast to isolated cells, confluent cells display no T-type, low threshold activity, and Ca currents were typically only elicited at very depolarized potentials. In these cells, voltage-dependent calcium entries will only be made operative by substances able to shift their activation towards the resting potential.  相似文献   

7.
An analysis of the relationship between electrical membrane activity and Ca2+ influx in differentiated GnRH-secreting (GT1) neurons revealed that most cells exhibited spontaneous, extracellular Ca(2+)-dependent action potentials (APs). Spiking was initiated by a slow pacemaker depolarization from a baseline potential between -75 and -50 mV, and AP frequency increased with membrane depolarization. More hyperpolarized cells fired sharp APs with limited capacity to promote Ca2+ influx, whereas more depolarized cells fired broad APs with enhanced capacity for Ca2+ influx. Characterization of the inward currents in GT1 cells revealed the presence of tetrodotoxin-sensitive Na+, Ni(2+)-sensitive T-type Ca2+, and dihydropyridine-sensitive L-type Ca2+ components. The availability of Na+ and T-type Ca2+ channels was dependent on the baseline potential, which determined the activation/inactivation status of these channels. Whereas all three channels were involved in the generation of sharp APs, L-type channels were solely responsible for the spike depolarization in cells exhibiting broad APs. Activation of GnRH receptors led to biphasic changes in cytosolic Ca2+ concentration ([Ca2+]i), with an early, extracellular Ca(2+)-independent peak and a sustained, extracellular Ca(2+)-dependent phase. During the peak [Ca2+]i response, electrical activity was abolished due to transient hyperpolarization. This was followed by sustained depolarization of cells and resumption of firing of increased frequency with a shift from sharp to broad APs. The GnRH-induced change in firing pattern accounted for about 50% of the elevated Ca2+ influx, the remainder being independent of spiking. Basal [Ca2+]i was also dependent on Ca2+ influx through AP-driven and voltage-insensitive pathways. Thus, in both resting and agonist-stimulated GT1 cells, membrane depolarization limits the participation of Na+ and T-type channels in firing, but facilitates AP-driven Ca2+ influx.  相似文献   

8.
Huang MH  So EC  Liu YC  Wu SN 《Steroids》2006,71(2):129-140
The effects of glucocorticoids on ion currents were investigated in pituitary GH3 and AtT-20 cells. In whole-cell configuration, dexamethasone, a synthetic glucocorticoid, reversibly increased the density of Ca2+ -activated K+ current (IK(Ca)) with an EC50 value of 21 +/- 5 microM. Dexamethasone-induced increase in IK(Ca) density was suppressed by paxilline (1 microM), yet not by glibenclamide (10 microM), pandinotoxin-Kalpha (1 microM) or mifepristone (10 microM). Paxilline is a blocker of large-conductance Ca2+ -activated K+ (BKCa) channels, while glibenclamide and pandinotoxin-Kalpha are blockers of ATP-sensitive and A-type K+ channels, respectively. Mifepristone can block cytosolic glucocorticoid receptors. In inside-out configuration, the application of dexamethasone (30 microM) into the intracellular surface caused no change in single-channel conductance; however, it did increase BKCa -channel activity. Its effect was associated with a negative shift of the activation curve. However, no Ca2+ -sensitiviy of these channels was altered by dexamethasone. Dexamethasone-stimulated channel activity involves an increase in mean open time and a decrease in mean closed time. Under current-clamp configuration, dexamethasone decreased the firing frequency of action potentials. In pituitary AtT-20 cells, dexamethasone (30 microM) also increased BKCa -channel activity. Dexamethasone-mediated stimulation of IK(Ca) presented here that is likely pharmacological, seems to be not linked to a genomic mechanism. The non-genomic, channel-stimulating properties of dexamethasone may partly contribute to the underlying mechanisms by which glucocorticoids affect neuroendocrine function.  相似文献   

9.
10.
The effects of changes in membrane cholesterol on ion currents were investigated in pituitary GH3 cells. Depletion of membrane cholesterol by exposing cells to methyl-beta-cyclodextrin (MbetaCD), an oligosaccharide, resulted in an increase in the density of Ca2+-activated K+ current (IK(Ca)). However, no significant change in IK(Ca) density was demonstrated in GH3 cells treated with a mixture of MbetaCD and cholesterol. Cholesterol depletion with MbetaCD (1.5 mg/ml) slightly suppressed the density of voltage-dependent L-type Ca2+ current. In inside-out patches recorded from MbetaCD-treated cells, the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels was enhanced with no change in single-channel conductance. In MbetaCD-treated cells, voltage-sensitivity of BK(Ca) channels was increased; however, no change in Ca2+-sensitivity could be demonstrated. A negative correlation between adjacent closed and open times in BK(Ca) channels was observed in MbetaCD-treated cells. In inside-out patches from MbetaCD-treated cells, dexamethasone (30 microM) applied to the intracellular surface did not increase BK(Ca)-channel activity, although caffeic acid phenethyl ester and cilostazol still opened its probability effectively. However, no modification in the activity of ATP-sensitive K+ channels could be seen in MbetaCD-treated cells. Current-clamp recordings demonstrated that the cholesterol depletion maneuver with MbetaCD reduced the firing of action potentials. Therefore, the increase in BK(Ca)-channel activity induced by membrane depletion may influence the functional activities of neurons or neuroendocrine cells if similar results occur in vivo.  相似文献   

11.
12.
Hormonal stimulation of voltage-dependent Ca2+ channels in pituitary cells is thought to contribute to the sustained phase of Ca2+ entry and secretion induced by secretion stimulating hormones and has been suggested as a mechanism for refilling the Ca2+ stores. Using the cell-attached patch-clamp technique, we studied the stimulation of single Ca2+ channels by thyrotropin-releasing hormone (TRH) in rat GH3 cells. We show that TRH applied from the bath switched the activity of single L-type Ca2+ channels from a gating mode with very low open probability (po) to a gating mode with slightly smaller conductance but 10 times higher po. Interconversions between these two gating modes were also observed under basal conditions, where the equilibrium was shifted towards the low po mode. TRH applied from the pipette had no effect, indicating the involvement of a cytosolic compound in the stimulatory pathway. We show that TRH does not potentiate all the L-type Ca2+ channels in a given membrane patch and report evidence for co-expression of two functionally different L-type Ca2+ channels. Our results uncover the biophysical mechanism of hormonal stimulation of voltage-dependent Ca2+ channels in GH3 cells and are consistent with differential modulation of different subtypes of dihydropyridine-sensitive Ca2+ channels.  相似文献   

13.
The effects of LY-171883, an orally active leukotriene antagonist, on membrane currents were examined in pituitary GH(3) and in neuroblastoma IMR-32 cells. In GH(3) cells, LY-171883 (1-300 microM) reversibly increased the amplitude of Ca(2+)-activated K(+) current in a concentration-dependent manner with an EC(50) value of 15 microM. In excised inside-out patches recorded from GH(3) cells, the application of LY-171883 into cytosolic face did not modify single channel conductance of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels; however, it did increase the channel activity. The LY-171883-stimulated activity of BK(Ca) channels is dependent on membrane potential, and results mainly from an increase in mean open time and a decrease in mean closed time. However, REV-5901 (30 microM) suppressed the activity of BK(Ca) channels and MK-571 (30 microM) did not have any effect on it. Under the current-clamp condition, LY-171883 (30 microM) caused membrane hyperpolarization as well as decreased the firing rate of action potentials in GH(3) cells. In neuroblastoma IMR-32 cells, the application of LY-171883 (30 microM) also stimulated BK(Ca) channel activity in a voltage-dependent manner. However, neither clofibrate (30 microM) nor leukotriene D(4) (10 microM) affected the channel activity in IMR-32 cells. Troglitazone (30 microM) decreased the channel activity, but ciglitazone (30 microM) enhanced it. This study clearly demonstrates that LY-171883 stimulates the activity of BK(Ca) channels in a manner unlikely to be linked to its blockade of leukotriene receptors or stimulation of peroxisome proliferator-activated receptors. The stimulatory effects on these channels may, at least in part, contribute to the underlying cellular mechanisms by which LY-171883 affects neuronal or neuroendocrine function.  相似文献   

14.
Intracellular recordings were taken from the smooth muscle of the guinea pig trachea, and the effects of intrinsic nerve stimulation were examined. Approximately 50% of the cells had stable resting membrane potentials of -50 +/- 1 mV. The remaining cells displayed spontaneous oscillations in membrane potential, which were abolished either by blocking voltage-dependent Ca(2+) channels with nifedipine or by depleting intracellular Ca(2+) stores with ryanodine. In quiescent cells, stimulation with a single impulse evoked an excitatory junction potential (EJP). In 30% of these cells, trains of stimuli evoked an EJP that was followed by oscillations in membrane potential. Transmural nerve stimulation caused an increase in the frequency of spontaneous oscillations. All responses were abolished by the muscarinic-receptor antagonist hyoscine (1 microM). In quiescent cells, nifedipine (1 microM) reduced EJPs by 30%, whereas ryanodine (10 microM) reduced EJPs by 93%. These results suggest that both the release of Ca(2+) from intracellular stores and the influx of Ca(2+) through voltage-dependent Ca(2+) channels are important determinants of spontaneous and nerve-evoked electrical activity of guinea pig tracheal smooth muscle.  相似文献   

15.
Maitotoxin (MTX) is a water-soluble polyether, isolated from the marine dinoflagellate Gambierdiscus toxicus, that stimulates hormone release and Ca2+ influx. We have investigated the action by which MTX induces Ca2+ influx and stimulates prolactin (PRL) release from GH4C1 rat pituitary cells. PRL release elicited by MTX is abolished in a concentration-dependent manner by nimodipine, a dihydropyridine (DHP) antagonist of type L voltage-dependent calcium channels (L-VDCC), indicating that MTX-enhanced PRL release occurs via activation of type L-VDCC. As an initial approach to determine whether MTX interacts directly with VDCC, we examined whether MTX affects the binding of [3H]PN 200-110, a DHP class antagonist, in intact GH4C1 cells. MTX increased the Bmax of [3H]PN 200-110 binding to intact GH4C1 cells from 4.6 +/- 0.03 to 12.5 +/- 2.2 fmol/10(6) cells, without changing the Kd. This indicates that MTX does not bind to the DHP site, but rather suggests that MTX may have an allosteric interaction with the DHP binding site. The effect of MTX on DHP binding was largely (65%) calcium-dependent. We next examined whether MTX alters the membrane potential of GH4C1 cells using the potential sensitive fluorescent dye bisoxonol. Addition of 100 ng/ml MTX to GH4C1 cells caused a membrane depolarization within 2.5 min which reached a plateau at 5 min. The MTX-induced depolarization was not prevented by substitution of impermeant choline ions for Na+. It was similarly unaffected by K+ channel blockers or by depleting the K+ chemical concentration gradient with gramicidin, a monovalent cation pore-forming agent. By contrast, low extracellular Ca2+ totally abolished the depolarization response, and nimodipine at 100 nM substantially reduced the MTX-induced membrane depolarization. These results indicate that the predominant effect of MTX on depolarization is Ca2+ influx through L-VDCC. Taken together, our results indicate that MTX-enhanced PRL release occurs exclusively via activation of type L-VDCC in GH4C1 cells. We suggest that MTX induces an initial slow calcium conductance, possibly via an allosteric interaction with a component of the VDCC complex, which, in turn, initiates a positive feedback mechanism involving calcium-dependent membrane depolarization and voltage-dependent activation of calcium channels.  相似文献   

16.
The depolarisation-induced influx of 45Ca2+ into anterior pituitary tissue and GH3 cells through 'L'-type, nimodipine-sensitive channels was investigated. In anterior pituitary prisms, phorbol esters, activators of protein kinase C, caused an enhancement of K(+)-induced 45Ca2+ influx. However, in the GH3 anterior pituitary cell line, phorbol esters inhibited K(+)-induced 45Ca2+ influx. The modulation by phorbol esters in both tissues was stereo-specific and time- and concentration-dependent. The diacylglycerol analogue, 1,2-dioctanoyl sn-glycerol was able to mimic the phorbol ester-induced enhancement of calcium influx into anterior pituitary pieces, but was ineffective in GH3 cells. 1,2-Dioctanoyl sn-glycerol may selectively activate an isoform of protein kinase C which is responsible for enhanced 'L'-type Ca(2+)-channel activity.  相似文献   

17.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We report that both Na+ and Ca2+ currents are involved in the action potentials and in the hormone release from rat somatotrophs in primary culture. Single somatotrophs were identified by reverse hemolytic plaque assay (RHPA) and transmembrane voltage and currents were recorded using the whole-cell mode of the patch-clamp technique. Somatotrophs displayed a mean resting potential of -80mV and an average input resistance of 5.7G omega. Most of the cells showed spontaneous or evoked action potentials. Single action potentials or the initial spike in a burst were characterized by their high amplitude and short duration. Tetrodotoxin (TTX, 1 microM) blocked single action potentials and the initial spikes in a burst, whereas action potentials of long duration and low amplitude persisted. Cobalt (2 mM) plus TTX (1 microM) blocked all the action potentials. Voltage-clamp experiments confirmed the presence of both a TTX-sensitive Na+ current and Co2(+)-sensitive Ca2+ currents. TTX or Na(+)-free medium slightly decreased the basal release of GH but did not markedly modify hGRF-stimulated GH release. However, Co2+ (2 mM), which partially decreased the basal release, totally blocked hGRF-stimulated release. We conclude that (1) Na+ currents which initiate rapid action potentials may participate in spontaneous GH release; (2) Ca2+ currents, which give rise to long duration action potentials and membrane voltage fluctuation, are probably involved in both basal and hGRF-stimulated GH releases.  相似文献   

19.
The relationship of free cytosolic Ca2+ to secretagogue-dependent activation of acid secretion by the mammalian parietal cell was studied using quin 2 as an intracellular Ca2+ probe. The resting [Ca2+]in of isolated dog parietal cells was found to be 134 +/- 11 nM. Carbachol produced a steady-state increase of [Ca2+]in and its effect was blocked by atropine and Ca2+ -channel blocking agents. Gastrin transiently elevated [Ca2+]in and this was not affected by Ca2+ -channel blocking agents. Neither histamine nor dbcAMP changed resting [Ca2+]in in rabbit parietal cells.  相似文献   

20.
Depolarization of membrane potential by high external K+ activates Ca2+ influx via voltage-dependent Ca2+ channels in GH4C1 cells (Tan, K.-N., and Tashjian, A. H., Jr. (1983) J. Biol. Chem. 258, 418-426). The involvement of this channel in thyrotropin-releasing hormone (TRH) action on prolactin (PRL) release was assessed by comparing the pharmacological characteristics of TRH-induced PRL release with PRL release due to high K+. Two components of TRH-stimulated PRL release were detected. The major component (approximately equal to 75%) was dependent on external Ca2+ concentration and was inhibited by voltage-dependent Ca2+ channel blockers in a manner quantitatively similar to high K+-stimulated PRL release. The minor component (approximately equal to 25%) of TRH-stimulated PRL release was insensitive to voltage-dependent Ca2+ channel blockers and could occur in the presence of low external Ca2+ (10(-5)-10(-7) M). Neither voltage-dependent Ca2+ channel blockers nor depletion of medium Ca2+ prevented the action of TRH on mobilizing cell-associated 45Ca2+ from GH4C1 cells. Divalent cations that permeate voltage-dependent Ca2+ channels (Sr2+ and Ba2+) substituted for Ca2+ in supporting high K+- and TRH-stimulated PRL release while Mg2+, a nonpermeant cation, did not. We conclude that TRH stimulates PRL release by increasing [Ca2+]i through at least two mechanisms: one requires only low [Ca2+]o, the second involves Ca2+ influx via voltage-dependent Ca2+ channels. This latter mechanism accounts for approximately equal to 75% of maximum TRH-induced PRL release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号