首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the first four days after unilateral nephrectomy the free tyrosine content in plasma, liver and hypertrophic kidney was decreased by more than 50% as compared with the values observed in intact rat. After sham operation, the content of tyrosine was decreased to the same extent. The activity of tyrosine aminotransferase in liver was doubled two days after sham operation: no such increase was observed after unilateral nephrectomy. At the same time a decline of the enzyme activity in kidney was demonstrated after both types of surgery. Hydrocortisone in a single i.p. dose stimulated enzyme activity in the liver of intact rats three-fold, and more than four-fold after nephrectomy and sham operation. In kidney of intact rat, as a result of hydrocortisone treatment, the enzyme activity was doubled; it was, however, insensitive to this treatment after unilateral nephrectomy, and increased only by 20% after sham operation. It is suggested that the changes in tyrosine content and tyrosine aminotransferase activity observed after unilateral nephrectomy were not due to stress alone, but underwent regulation aimed at assuring a sufficient level of this amino acid for metabolism.  相似文献   

2.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferse (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rat limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate. For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1- 14C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U- 14C]acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studied gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

3.
The pyrimidine analogs, 5-fluoroorotate and 5-azacytidine, have been shown to stimulate the basal level as well as the cortisone, tryptophan, and casein hydrolysate-induced levels of the rat liver enzyme, tyrosine aminotransferase. This stimulation was most marked in the case of dietary and hormonal induction when the analog was given 4–6 hr prior to the administration of the inducer. When tryptophan induced tyrosine aminotransferase, maximal stimulation by the analog occurred if it were given 2 hr prior to the administration of the amino acid. The optimal stimulatory dose of 5-azacytidine was 5 mg/kg body weight whereas 5-fluoroorotate gave its highest stimulation at a dose of 60 mg/kg. Of several orotic acid analogs tested, only the chloro-analog had an effect similar to the fluoro-congener.Utilizing quantitative immunochemical precipitation and pulse labeling in vivo, it was demonstrated that the administration of 5-fluoroorotate or 5-azacytidine at doses of 60 and 5 mg per kg, respectively, while causing a stimulation in the basal level of tyrosine aminotransferase, did not result in any change in the rate of enzyme synthesis. Furthermore, after cortisone induction of the enzyme, the delayed administration of these analogs caused either a further stimulation in the level of the enzyme or the maintenance of a high level while the enzyme activity decayed in animals not given the analogs. The rates of synthesis either showed no change or a decrease while the amount of enzyme was increasing. Prelabeling of the enzyme in vivo after induction with cortisone and followed by the administration of 5-fluoroorotate resulted in a marked decrease in the t12 of the decay rate of the enzyme measured either by loss of radioactivity or by loss of enzyme activity. These studies suggest that these analogs act in some manner to prevent enzyme turnover by an inhibition of enzyme degradation.  相似文献   

4.
Time- and dose-dependence of the formation of the different cytoplasmic hormone-protein complexes were studied in the rat liver after administration in vivo of [3H]cortisol or [3H]dexamethasone and compared with the stimulation of RNA polymerase B and induction of tyrosine aminotransferase and tryptophan oxygenase. No correlation could be found between formation in vivo of any of the five cytoplasmic hormone-protein complexes found and stimulation of RNA polymerase B activity or enzyme induction. After administration of [3H]cortisol, different metabolites of cortisol could be demonstrated in the isolated hormone-protein complexes. No time- or dose-dependence of the metabolite patterns could be observed after application of hormone doses that were in the range of the biologically active doses. After administration of [3H]dexamethasone, the same hormone-protein complexes were observed, which contained, however, the injected steroid instead of metabolites. These results seem to indicate that the cytoplasmic binding components present in the rat liver are enzymes involved in the metabolism of the glucocorticosteroids and that dexamethasone binds to these enzymes as a substrate analogue.  相似文献   

5.
When trypsin-dissociated liver cells from 17-day chick embryos were grown in regular minimum essential medium, mixed hepatocyte-fibroblast cultures resulted. When D-valine was substituted for L-valine in this medium, fibroblast growth was suppressed, leaving virtually pure hepatocyte cultures. Tyrosine aminotransferase activity is induced by cortisol in mixed cultures. No induction of enzyme activity is observed with cortisol exposure to hepatocytes, grown in D-valine. However, when cortisol-containing medium is conditioned by pre-incubation with mixed cells and then transferred to hepatocytes, tyrosine aminotransferase activity is induced. Enzyme activity is also induced in mixed cells incubated in D-valine medium in the presence of cortisol. It appears that a substance produced in the presence of fibroblasts exposed to cortisol is capable of inducing tyrosine aminotransferase activity in hepatocytes. This activity, which we have termed fibroblast hepatocyte factor, is heat stable, of low molecular weight, and antigenically different from fibroblast pneumonocyte factor, a factor similar to that produced by lung fibroblasts exposed to cortisol.  相似文献   

6.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferase (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rate limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate.For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1-14 C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U-14C] acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studies gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

7.
The total activity of three key enzymes and the flux through eight steps of aromatic amino acid metabolism have been determined in liver cells isolated from rats fed either control or pyridoxine-free diet for 5-6 weeks. The pyridoxine-free diet caused a decrease in the catabolism of tyrosine and phenylalanine because of a drop in the flux through tyrosine aminotransferase. This decrease of expressed cellular tyrosine aminotransferase activity can be fully explained in terms of loss of cofactor. Larger decreases in the catabolism of tryptophan were seen after pyridoxine deprivation. The decreased extent of tryptophan catabolism can be solely attributed to loss of cofactor or increased degradation of kynureninase. Inhibition of tryptophan 2,3-dioxygenase was seen in pyridoxine deficiency, probably because of the buildup of the kynurenine metabolites. The control strength of kynureninase, for flux through kynureninase, was calculated to be less than or equal to 0.004, but 0.41 after pyridoxine deprivation. The sensitivity of the three pathways to pyridoxine deprivation is interpreted and discussed in terms of the different affinities for pyridoxal phosphate and the control strengths of the pyridoxal phosphate-dependent enzymes, tyrosine aminotransferase and kynureninase.  相似文献   

8.
G J Lees 《Life sciences》1977,20(10):1749-1762
Using low concentrations of substrates and cofactors, a comparison was made of the relative rates by which aminotransferases catalysed transaminations between aromatic amino acids and aromatic or aliphatic keto acids. Tryptophan aminotransferase in homogenates of rat midbrain and liver transaminated phenylpyruvate at a rate 70 to 150-fold greater than the rate with α-ketoglutarate at low concentrations of substrates. Phenylalanine aminotransferase in liver and midbrain also was more active with aromatic keto acids than with aliphatic keto acids. However, tyrosine aminotransferase in dialysed homogenates of midbrain transaminated α-ketoglutarate and phenylpyruvate at approximately equal rates. Fresh homogenates of midbrain contained an inhibitor which markedly decreased tyrosine aminotransferase activity with α-ketoglutarate but not with phenylpyruvate. Tyrosine aminotransferase in homogenates of rat liver transaminated α-ketoglutarate and phenylpyruvate at equal rates below 10 μM keto acid, but above 10 μM, transamination of α-ketoglutarate was favoured. With homogenates of liver, transamination of α-ketoglutarate, but not phenylpyruvate, by tyrosine was increased 650% by exogenous pyridoxal phosphate. Since tryptophan aminotransferase in the brain may compete with tryptophan hydroxylase for available tryptophan, a comparison was made of the relative activities of tryptophan hydroxylase and tryptophan aminotransferase. At concentrations above 7.5 μM phenylpyruvate, transamination was 8 to 17-fold greater than the rate of hydroxylation of 50 μM tryptophan.  相似文献   

9.
1. Premature delivery of foetal rats by uterine section results in the rapid appearance of tyrosine aminotransferase activity in foetal liver, after an initial lag period of 3-6hr. 2. The premature induction of activity is completely repressible by actinomycin D given soon after delivery and partially repressible by puromycin and amino acid analogues. 3. Glucagon injections into foetal rats in utero lead to production of tyrosine aminotransferase in the foetal liver, but adrenalin and nor-adrenalin are without effect. 4. Injections of glucose, galactose, fructose and mannose into prematurely delivered rats repress the development of tyrosine aminotransferase activity about 50% when they are given 2hr. after delivery, but glucose has no significant effect when injected at delivery. 5. The results are discussed in relation to current hypotheses on the role of hormones in enzyme induction in foetal development.  相似文献   

10.
Y.C. Chia  G.W. Smith  G.J. Lees 《Life sciences》1984,34(25):2443-2452
Homogenates of rat liver transaminate phenylpyruvate (PP), as well as α-ketoglutarate (α-KG), in the presence of L-tyrosine, 3,4-dihydroxyphenylalanine (L-DOPA) or L-tryptophan. Aminotransferase activity with phenylpyruvate and DOPA, but not with tyrosine, was inhibited by excess phenylpyruvate. Tyrosine and DOPA aminotransferase activities with phenylpyruvate were more heat stable than the corresponding activities with α-ketoglutarate. Aminotransferase activities with phenylpyruvate were not significantly induced following intraperitoneal injections of cortisol, glucagon or serotonin, compared with a 3 to 7-fold increase in the aminotransferase activities with α-ketoglutarate. Tyrosine:phenylpyruvate aminotransferase activity rose 40% at night, compared with a 300% increase in tyrosine:α-ketoglutarate aminotransferase activity. The results suggest that aminotransferases catalysing transfers between aromatic keto acids and aromatic amino acids are separate enzymes from those utilizing α-ketoglutarate as the acceptor keto acid.  相似文献   

11.
In experiments on glucose-6-phosphatase and tyrosine aminotransferase it was shown that radiation induces changes in enzymic differentiation in perinatal rat liver. A study was made of the probable reasons for the observed changes. It was shown that the macromolecular system of the protein enzyme synthesis was not damaged by the radiation doses used. The observed decrease in glucose-6-phosphatase activity during late embryogenesis, after pre-irradiation at early organogenesis, is eliminated by administration of exogenous thyroxine. A radiation-induced rise in the tyrosine aminotransferase activity during the perinatal period correlated with the cyclic AMP system status. It is proposed that modification of enzymic differentiation after irradiation results from the change in the amount of inductors.  相似文献   

12.
Rat liver tyrosine aminotransferase was purified 200-fold and an antiserum raised against it in rabbits. 2. Hepatic tyrosine aminotransferase activity was increased fourfold by tyrosine, twofold by tetracycline, 2.5-fold by cortisone 21-acetate and ninefold by a combination of tyrosine and cortisol administered intraperitoneally to rats. 3. Radioimmunoassay with 14C-labelled tyrosine aminotransferase, in conjunction with rabbit antiserum against the enzyme, revealed that cortisol stimulates the synthesis of the enzyme de novo, but that tetracycline has no such effect. 4. Incubation of rat liver homogenates with purified tyrosine aminotransferase in vitro leads to a rapid inactivation of the enzyme, which tetracycline partially inhibits. 5. The inactivation is brought about by intact lysosomes, and the addition of 10mM-cysteine increases the rate of enzyme inactivation, which is further markedly increased by 10mM-Mg2+ and 10mM-ATP. Here again tetracycline partially inhibits the decay rate, leading to the inference that the increase of tyrosine aminotransferase activity in vivo by tetracycline is brought about by the latter inhibiting the lysosomal catheptic action.  相似文献   

13.
Messenger RNA activities for two cortisol-inducible enzymes, tyrosine aminotransferase and tryptophan oxygenase, have been determined by translation in a wheat germ system. The effects of cycloheximide on the two mRNA activities have been evaluated. Cortisol leads to an increase of the translatable mRNAs for tyrosine aminotransferase and tryptophan oxygenase with a maximum at approximately 6 h. Cycloheximide was administered 4 h after treatment with cortisol; 2 h later, the activities of tyrosine aminotransferase and tryptophan oxygenase mRNA had increased five-fold and two-fold, respectively, compared to the activities reached with cortisol alone. Thereafter the amount of the two translatable mRNAs declined, though 14 h after cortisol administration the mRNA activities were still several fold higher than in control animals. Application of alpha-amanitin together with cycloheximide did not prevent an increased accumulation of specific translatable mRNAs. The increase in tyrosine aminotransferase and tryptophan oxygenase activity by cortisol was immediately blocked by cycloheximide. Whereas tryptophan oxygenase activity rapidly declined after cycloheximide application, tyrosine aminotransferase activity remained at the same level. Approximately 4 h thereafter, both enzyme activities increased again.  相似文献   

14.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

15.
L-Hydrazinosuccinate, which has been shown to be a slow-, tight-binding inhibitor of aspartate aminotransferase (EC 2.6.1.1) in vitro, was tested as an inhibitor in vivo of the enzyme as well as other pyridoxal enzymes. Intraperitoneal administration to mice at a dose of 0.6 mmol/kg rapidly decreased aspartate aminotransferase activities in liver and kidney cytosols to a minimal level lower than 10% of the original, and no appreciable reversal of the inhibition was observed after 24 h; at lower doses the activities were significantly recovered during the same period following an initial marked decrease. Of the other pyridoxal enzymes tested, alanine aminotransferase in liver was the most sensitive to the inhibitor. It was initially inhibited as severely as aspartate aminotransferase, but the inhibition was reversed considerably faster. Aspartate aminotransferase activities in brain and heart were less severely affected than those in liver and kidney; they were less markedly lowered initially and were substantially recovered after 24 h. Consistent with the observed organ specificity, heated extracts from brain and heart in the mice administered with the inhibitor showed relatively weak inhibitory activities in vitro to aspartate aminotransferase purified from pig heart, while the extracts from liver and kidney were strongly inhibitory.  相似文献   

16.
Several protein synthesis inhibitors were as effective as the inducers hydrocortisone or cyclic AMP in elevating rat liver tyrosine aminotransferase mRNA levels when assayed in the wheat germ cell-free translational system. Cycloheximide, emetine, or puromycin increased this mRNA activity 6- to 7-fold within 4 h after in vivo administration. No increase in total hepatic mRNA levels or tryptophan oxygenase mRNA was found after treatment with these protein synthesis inhibitors. Furthermesults suggest that a short lived protein may specifically regulate the level of functional hepatic tyrosine aminotransferase mRNA or that ongoing translation of this mRNA is required for its degradation.  相似文献   

17.
The degradation of rat liver tyrosine aminotransferase has been studied after transfection of suitable expression vectors into mammalian cells in culture. A normal rapid rate of degradation (half-life about 6 h) was observed in cells under stable transfection conditions. However, the higher enzyme levels produced during transient transfections or after amplification with methotrexate caused the apparent half-life of degradation to increase substantially. Analysis of expression in Chinese hamster ovary (CHO)-DG44 cells from vectors with deletions near either end of the tyrosine aminotransferase coding sequence showed that approximately the first 40 and the last 12 amino acid residues are not required to obtain normal catalytic function. When catalytically active deletion mutants were examined for effects on tyrosine aminotransferase degradation in stably transfected CHO-DG44 cell populations, short sequences near each end of the protein were found to be necessary for rapid degradation. The required sequence near the amino terminus is located between amino acids 30 and 40 and includes the highly basic region RKKGRKAR, a potential ubiquitin attachment site. The other essential sequence (EECDK) is located at the very COOH terminus of the 454-amino acid chain and is part of an acidic domain rich in cysteines and having PEST characteristics (rich in Pro, Glu, and Thr). Ser448, a potential casein kinase II phosphorylation site, is not required for activity or rapid degradation of tyrosine aminotransferase. No correlation was observed between the intracellular degradation rates of the various mutant proteins and their heat stabilities in vitro.  相似文献   

18.
The plasma concentration of phenylalanine and tyrosine decreases in normal rats during the first few postnatal days; subsequently, the concentration of phenylalanine remains more or less constant, whereas that of tyrosine exhibits a high peak on day 13. The basal concentrations of the two amino acids were not altered by injections of thyroxine or cortisol, except in 13-day-old rats, when an injection of cortisol decreased the concentration of tyrosine. In young rats (13-15 days old), treatment with cortisol increased the activity of phenylalanine hydroxylase in the liver (measured in vitro) and accelerated the metabolism of administered phenylalanine: the rate constant of the disappearance of phenylalanine from plasma and the initial increase in tyrosine in plasma correlated quantitatively with the activity of phenylalanine hydroxylase in the liver. In adult rats, the inhibition of this enzyme (attested by assay in vitro) by p-chlorophenylalanine resulted in a proportionate decrease in tyrosine formation from an injection of phenylalanine. However, the quantitative relationship between liver phenylalanine hydroxylase activity and phenylalanine metabolism within the group of young rats was different from that observed among adult rats.  相似文献   

19.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

20.
Administration of cortisol to an animal induces tyrosine aminotransferase (TAT) in the liver. A similar effect was observed after stimulation of resident liver macrophages (Kupffer cells) by dextran sulfate. Actinomycin D completely blocks enzyme induction both by cortisol and dextran sulfate, whereas their combined effect gives an additive result. In primary culture of hepatocytes, dextran sulfate inhibits TAT activity, but conditioned macrophage medium reliably increases enzyme activity in hepatocytes. However, incubation of isolated macrophages in the presence of dextran sulfate and such medium transfer into hepatocyte culture results in even more pronounced increase in TAT activity. In a combined culture of hepatocytes and non-parenchymal liver cells, reproducing intercellular interactions in vitro, cortisol and non-parenchymal cells exhibit an additive effect on TAT activity. These results show that liver macrophages release a factor of unknown nature launching the mechanism of TAT induction independently of cortisol, a classic TAT inducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号