首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The broadspectrum herbicide glyphosate (N-[phosphonomethyl]-glycine), which causes the accumulation of shikimic acid in plant tissues, inhibits the enzymatic conversion of shikimic acid to anthranilic acid in a cell-free extract of Aerobacter, aerogenes 50% at 5 to 7 μM concentrations. Of the four enzymes involved in the transformation, only 5-enolpyruvylshikimic acid-3-phosphate synthase is inhibited by the herbicide.  相似文献   

2.
The broad-spectrum herbicide glyphosate inhibits the growth of Candida maltosa and causes the accumulation of shikimic acid and shikimate-3-phosphate. Glyphosate is a potent inhibitor of three enzymes of aromatic amino acid biosynthesis in this yeast. In relation to tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and dehydroquinate synthase, the inhibitory effect appears at concentrations in the mM range, but 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase is inhibited by micromolar concentrations of glyphosate. Inhibition of partially purified EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate (PEP) with a K i -value of 12 M. The app. K m for PEP is about 5-fold higher and was 62 M. Furthermore, the presence of glyphosate leads to derepression of many amino acid biosynthetic enzymes.Abbreviations DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate - EPSP synthase 5-enolpyruvylshikimate 3-phosphate synthase - PEP phosphoenolpyruvate - S-3-P shikimate-3-phosphate  相似文献   

3.
Summary A Nicotiana plumbaginifolia cell strain carrying a positive (dominant) trait, resistance to azetidine-2-carboxylate (A2C), was selected in strain NX1 which lacked nitrate reductase activity (a negative or recessive trait). This universal hybridizer strain, denoted NXAr, was fused with dextran to a Daucus carota strain, PR, which carried glyphosate (GLP) resistance. A large number of hybrids were selected in a medium with NO 3 - as the sole nitrogen source and A2C as inhibitor, conditions which prevent the growth of both parents. When the selected colonies were then tested for GLP resistance, 93% carried this trait. In addition the hybrid nature was indicated by additive chromosome numbers, both A2C and GLP resistance in suspension cultures, intermediate nitrate reductase activity and the presence of banding patterns for three isozymes which match those of the parents. Southern hybridization analysis using an enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) probe, pMON 6145, also showed the presence of the gene from both parents in the hybrid strains based on restriction length polymorphisms. The PR strain contains increased levels of EPSPS which confers GLPr due to gene amplification. Since the universal hybridizer can be used as a fusion partner with any wild-type line many protoplast fusion studies can be carried out easily.Abbreviations A2C azetidine-2-carboxylate - 2,4-D 2,4-dichlorophenoxyacetic acid - EPSPS 5-enolpyruvylshikimic acid-3-phosphate synthase - GLP glyphosate - HAT hypoxanthine, aminopterin, glycine and thymidine medium - IDH isocitrate dehydrogenase - MDH malate dehydrogenase - 5MT 5-methyltryptophan - NBT nitroblue tetrazolium - PGI phosphoglucoisomerase - SDS sodium dodecylsulfate  相似文献   

4.
Cell cultures of Corydalis sempervirens adapted to growth in the presence of 5 millimolar glyphosate overproduce the herbicide's target enzyme, 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, 30- to 40-fold. In vitro translation of total RNA and poly(A)-RNA coupled with immunoprecipitation showed that the protein is synthesized as a precursor of relative molecular weight (Mr) 53900 ± 900 as compared to Mr 45500 ± 1000 of the mature enzyme. Translatable activity of mRNA for EPSP-synthase in glyphosate-adapted cultures is tenfold higher than in nonadapted cultures.  相似文献   

5.
A glyphosate-tolerant variant of cultured tomato cells (Lycopersicon esculentum × L. peruvianum hybrid) was isolated via a single-step selection. Growth of the variant in suspension culture was essentially unaffected by 10 mM glyphosate, 100 times the concentration needed to significantly reduce the growth rate of wild type cells. When treated with glyphosate, variant cells accumulated much less shikimic acid than did the wild type cells. In analyses of 5-enolpyruvyl-shikimic acid 3-phosphate (EPSP) synthase activity in two separate experiments, the variant cells had 8 and 13 times higher specific activity than the wild type cells. The enzyme activities from the two types of cells were equally inhibited by glyphosate. These results suggest that the glyphosate tolerance of the variant results from overaccumulation of a glyphosate-sensitive EPSP synthase. Attempts to regenerate fertile plants from the variant cells were unsuccessful, but abnormal shoots were regenerated and callus from leaves of these shoots retained the tolerance to glyphosate.  相似文献   

6.
Cultured carrot (Daucus carota L.) cells were adapted to growing in 25 millimolar glyphosate by transfer into progressively higher concentrations of the herbicide. Tolerance was increased 52-fold, and the adaptation was stable in the absence of glyphosate. The uptake of glyphosate was similar for adapted and nonadapted cells. Activity of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase was 12-fold higher in the adapted line compared to nonadapted cells, while activities of shikimate dehydrogenase and anthranilate synthase were similar in the two cell types. The adapted cells had higher levels of free amino acids—especially threonine, methionine, tyrosine, phenylalanine, tryptophan, histidine, and arginine—than did nonadapted cells. Glyphosate treatment caused decreases of 50 to 65% in the levels of serine, glycine, methionine, tyrosine, phenylalanine, and tryptophan in nonadapted cells, but caused little change in free amino acid levels in adapted cells.

The adaptation reported here supports the growing body of evidence linking tolerance to glyphosate with increased levels of the enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The elevated levels of aromatic amino acids, which may confer resistance in adapted cells, suggest that control of the shikimate pathway may be altered in these cells.

  相似文献   

7.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.9) from the glyphosate-tolerant cyanobacterium Anabaena variabilis (ATCC 29413) was purified to homogeneity. The enzyme had a similar relative molecular mass to other EPSP synthases and showed similar kinetic properties except for a greatly elevated K i for the herbicide glyphosate (approximately ten times higher than that of enzymes from other sources). With whole cells, the monoisopropylamine salt of glyphosate was more toxic than the free acid but the effects of the free acid and monoisopropylamine salt on purified EPSP synthase were identical.Abbreviations EPSP 5-enolpyruvylshikimate 3-phosphate - Mr relative molecular mass - PEP phosphoenolpyruvate - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - S3P shikimate 3-phosphate The funding of this work by the Agricultural and Food Research Council and the University of Dundee Research Initiatives Programme is gratefully acknowledged.  相似文献   

8.
Summary A Daucus carota cell line selected as resistant to N-(phosphonomethyl)-glycine (glyphosate) was found to have increased levels of 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) activity of 5.5 times over wild-type carrot and an EPSPS protein level increase of 8.7 times as confirmed by Western hybridization analysis. Southern blot hybridization using a petunia EPSPS probe showed increases in the number of copies of EPSPS genes in the glyphosate-resistant line which correlated with the higher levels of the EPSPS enzyme. The mechanism of resistance to glyphosate is therefore due to amplification of the EPSPS gene. To examine the stability of the amplified genes, cloned lines selected as doubly resistant to Dl-5-methyltryptophan (5MT) and azetidine-2-carboxylate (A2C) were fused with the amplified EPSPS glyphosate-resistant cell line. Somatic hybrids expressed resistances to 5MT in a semidominant fashion while A2C and glyphosate resistance was expressed as dominant, or semi-dominant traits, in a line-specific manner. The hybrid lines possessed additive chromosome numbers of the parental lines used and no double minute chromosomes were observed. The glyphosate-resistant parental line and most somatic hybrids retained the amplified levels of EPSPS in the absence of selection pressure over a 3-year period.  相似文献   

9.
A new assay for 5-enolpyruvylshikimate-3-phosphate synthase is described. This enzyme of the shikimate pathway of aromatic amino acid biosynthesis generates 5-enolpyruvylshikimate 3-phosphate and orthophosphate from phosphoenolpyruvate and shikimate 3-phosphate. The shikimate pathway is present in bacteria and plants but not in mammals. The assay employs a paper-chromatographic separation of radiolabeled substrate from product. The method is specific, is sensitive to 50 pmol of product, and is suitable for use in crude extracts of bacteria. This enzyme appears to be the primary target site of the commercial herbicide glyphosate (N-phosphonomethyl glycine). A procedure for the enzymatic synthesis of [14C]shikimate 3-phosphate from the commercially available precursor [14C]shikimic acid is also described.  相似文献   

10.
This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.  相似文献   

11.
A glyphosate (N-[phosphonomethyl]glycine)-insensitive 5-enolpyruvylshikimic acid-3-phosphate (EPSP) synthase has been purified from a strain of Klebsiella pneumoniae which is resistant to this herbicide [(1984) Arch. Microbiol. 137, 121-123] and its properties compared with those of the glyphosate-sensitive EPSP synthase of the parent strain. The apparent Km values of the insensitive enzyme for phosphoenolpyruvate (PEP) and shikimate 3-phosphate (S-3-P) were increased 15.6- and 4.3-fold, respectively, as compared to those of the sensitive enzyme, and significant differences were found for the optimal pH and temperature, as well as the isoelectric points of the two enzymes. While PEP protected both enzymes against inactivation by N-ethylmaleimide, 3-bromopyruvate, and phenylglyoxal, glyphosate protected only the sensitive enzyme.  相似文献   

12.
Jin D  Lu W  Ping S  Zhang W  Chen J  Dun B  Ma R  Zhao Z  Sha J  Li L  Yang Z  Chen M  Lin M 《Current microbiology》2007,55(4):350-355
Glyphosate, a powerful nonselective herbicide, acts as an inhibitor of the activity of the enzyme 5-enoylpyruvylshikimate-3-phosphate synthase (EPSPS) encoded by the aroA gene involved in aromatic amino acid biosynthesis. An Escherichia coli mutant AKM4188 was constructed by insertion a kanamycin cassette within the aroA coding sequence. The mutant strain is an aromatic amino acids auxotroph and fails to grow on M9 minimal media due to the inactive aroA. A DNA metagenomic library was constructed with samples from a glyphosate-polluted area and was screened by using the mutant AKM4188 as recipient. Three plasmid clones, which restored growth to the aroA mutant in M9 minimal media supplemented with chloramphenicol, kanamycin, and 50 mM glyphosate, were obtained from the DNA metagenomic library. One of them, which conferred glyphosate tolerance up to 150 mM, was further characterized. The cloned fragment encoded a polypeptide, designated RD, sharing high similarity with other Class II EPSPS proteins. A His-tagged RD fusion protein was produced into E. coli to characterize the enzymatic properties of the RD EPSP protein.  相似文献   

13.
Glyphosate tolerant cell lines were selected from highly embryogenic cell suspension culture ofMedicago sativa L. Resistant cell lines showed significant reduction of embryogenic ability and during long-term culture in the presence of glyphosate gradual loss of this ability was observed. After glyphosate treatment the increased activity of 5-enolpyruvylshikimate-3-phosphate synthase in tolerant cell lines overcame the block in aromatic amino acid synthesis which was observed in control cell lines. Glyphosate caused marked increase in the content of shikimic acid in both control and tolerant cell lines but the accumulation of shikimic acid was considerably lower in tolerant calli. Significant qualitative and quantitative differences were found in the content of individual phenolic acids. The considerable decrease in the amount of cinnamic acid derivates and broader spectrum of hydroxybenzoic acids suggest in tolerant cell lines the activation of alternative pathway not regulated by phenylalanine ammonia lyase. The possible role of altered pool of phenolic acids on the embryogenic ability is discussed.  相似文献   

14.
The parasitic plant Cuscuta campestris is dependent on its host for water, assimilates and amino acids. It can be controlled by the herbicide glyphosate, which inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), resulting in shikimate accumulation. In this study, C. campestris was parasitic on transgenic tobacco plants expressing green fluorescent protein (GFP) in the phloem. Changes in [14C]sucrose and GFP accumulation in the parasite were used as indicators of the herbicides effect on translocation between the host and parasite. Host plants were treated with glyphosate 22 days after sowing. Shikimate accumulation in the parasite 1 day after glyphosate treatment (DAGT) confirmed EPSPS inhibition in C. campestris. No damage was visible in the host plants for the first 3 DAGT, while during that same time, a significant reduction in [14C]sucrose and GFP accumulation was observed in the parasite. Thus, we propose that the parallel reduction in GFP and sucrose accumulation in C. campestris is a result of a glyphosate effect on the parasites ability to withdraw assimilates from the host.Abbreviations CLSM Confocal laser-scanning microscope - DAGT Days after glyphosate treatment - DAS Days after sowing - EPSPS 5-Enolpyruvylshikimate-3-phosphate synthase - GFP Green fluorescent protein  相似文献   

15.
C. C. Smart  N. Amrhein 《Planta》1987,170(1):1-6
Recently we have shown that cultured cells of the higher plant Corydalis sempervirens Pers., adapted to growth in the presence of high concentrations of the herbicide glyphosate, a potent specific inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimic acid 3-phosphate (EPSP) synthase (EC 2.5.1.19, 3-phosphoshikimate 1-carboxyvinyltransferase) oversynthesize the EPSP synthase protein (Smart et al., 1985, J. Biol. Chem. 260, 16338–16346). We now report that the EPSP synthase protein can be detected in cells of the adapted as well as of the non-adapted strain by the use of protein A-colloidal gold immunocytochemistry. The overproduced EPSP synthase in the glyphosate-adapted cells is located exclusively in the plastid and we find no evidence for the existence of extra-plastidic EPSP synthase in either strain.Abbreviations EPSP 5-enolpyruvylshikimic acid 3-phosphate  相似文献   

16.
Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). This is a key enzyme in the aromatic amino acid biosynthesis pathway of microorganisms and plants. The manipulation of bacterial EPSPS gene in order to reduce its affinity for glyphosate, followed by its transfer to plants is one of the most effective approaches for the production of glyphosate-tolerant plants. In this study, we chose to focus on amino acid residues glycine96 and alanine183 of the E. coli (k12) EPSPS enzyme. These two amino acids are important residues for glyphosate binding. We used site directed mutagenesis (SDM) to induce point mutations in the E. coli EPSPS gene, in order to convert glycine96 to alanine (Gly96Ala) and alanine183 to threonine (Ala183Thr). After confirming the mutation by sequencing, the altered EPSPS gene was transferred to rapeseed (Brassica napus L.) via Agrobacterium-mediated transformation. The transformed explants were screened in shoot induction medium containing 25 mg L−1 kanamycin. Glyphosate tolerance was assayed in putative transgenic plants. Statistical analysis of data showed that there was a significant difference between the transgenic and control plants. It was observed that transgenic plants were resistant to glyphosate at a concentration of 10 mM whereas the non-transformed control plants were unable to survive 1 mM glyphosate. The presence and copy numbers of the transgene were confirmed with PCR and Southern blotting analysis, respectively.  相似文献   

17.
Usually, stepwise selection of plant suspension cultures with gradually increasing concentrations of the herbicide glyphosate results in the amplification of the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) gene that leads to resistance by increasing EPSPS mRNA and enzyme activity. We show that glyphosate selection with newly initiated suspension cultures can produce resistant lines with resistance mechanisms other than gene amplification and that usually as the cultures age gene amplification becomes the predominant mechanism. Gene amplification did not occur in 3 lines selected from 5-month-old Datura innoxia Mill. cultures but did occur in all 10 lines selected after 52 months. Selection with Nicotiana tabacum L. (tobacco) less than 5 months old produced 2 lines out of 24 with no EPSPS amplification while all 17 lines selected from older cultures contained amplified genes. Lines selected from the oldest culture (35 years) also exhibited amplification of several different genes, indicating the expression of different EPSPS genes or an enhanced gene amplification incidence. None of the 15 lines selected from 2 different 5-month-old Daucus carota L. (carrot) lines exhibited amplification while amplification led to the resistance of all 7 lines selected from one of the original carrot lines (DHL) after 3 years. However, the other line (Car4) was exceptional and produced only non-amplified lines (9 of 9) after 8 years in culture. These results show that plant tissue cultures change with time in culture and that several different new mechanisms can result in glyphosate resistance.Abbreviations AHAS acetohydroxyacid synthase - EPSPS 5-enolpyruvylshikimate-3-phosphate synthase  相似文献   

18.
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.  相似文献   

19.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号