首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The effect of pH on the structure of the communities of anoxygenic-phototrophic-bacteria (APB) was studied under laboratory conditions. Samples of natural APB communities were inoculated into media that differed in pH values, which were 7, 9.5, or 10.5. The structure of the APB communities in the obtained enrichment cultures depended on the pH values and on the mineralization levels of the media, which were the same as in the lakes from which samples were taken. The same dependence of the community structure on salinity was observed as in the case of the natural communities that had been described previously. APB were most diverse in the enrichment cultures grown at pH 9.5. The shift of the pH to either neutral or extremely alkaline values affected the species diversity within the APB community, resulting in marked predominance of the most adapted forms. It was shown that the status of Ectothiorhodospira within the community could serve as an indicator of both salinity and pH in soda lakes with a water mineralization of higher than 5 g/l. The statuses of various APB groups in the community as dependent on pH and salinity are discussed, as well as possible changes in these statuses due to changes in the water level and other environmental parameters in the studied lakes.  相似文献   

2.
The structure of benthic phototrophic communities of 24 soda lakes of the southeastern Transbaikal Region was studied. The physicochemical properties of the lakes were determined. The results of enumeration of anoxygenic phototrophic bacteria (APB) belonging to various groups are presented. The influence of salinity on the structure of APB communities was investigated. The APB reaction to environmental conditions was determined. Massive development of phototrophic microorganisms in the form of mats and films was observed in the majority of the investigated lakes. The APB communities were characterized by a wide diversity and evenness of species composition. Purple sulfur bacteria of the families Ectothiorhodospiraceae and Chromatiaceae were predominant. Purple nonsulfur bacteria of the family Rhodobacteraceae, green filamentous bacteria Oscillochloris sp., and heliobacteria were also detected. According to preliminary data, no less than 15 species of APB occur in the studied lakes. Among them, three novel genera and four species have already been described. Identification of other isolates is still in progress. The lakes make an almost continuous series of fresh, brackish, and saline water bodies, varying in their degree of mineralization. It was demonstrated that the structure of APB communities was unaffected by changes in salinity from 5 to 40 g/l. At salt concentrations of lower than 5 g/l, the level of water mineralization became a limiting factor. Experiments with the isolated cultures showed that the APB were obligately dependent on the presence of carbonate ions in the medium. They were haloalkalitolerant or haloalkaliphilic. Thus, they are well adapted to the conditions of soda lakes with a low of moderate mineralization. It was demonstrated that soda lakes of the southeastern Transbaikal Region represent a special type of habitat which harbors a peculiar autochthonous microflora and differs from both highly mineralized soda lakes and shallow saline water bodies of the sea origin.  相似文献   

3.
The structure of benthic phototrophic communities of 24 soda lakes of the southeastern Transbaikal Region was studied. The physicochemical properties of the lakes were determined. The results of the cell count of anoxygenic phototrophic bacteria (APB) belonging to various groups are presented. The influence of salinity on the structure of APB communities was investigated. The APB reaction to environmental conditions was determined. Massive development of phototrophic microorganisms in the form of mats and films was observed in the majority of the investigated lakes. The APB communities were characterized by a wide diversity of species and evenness of species composition. Purple sulfur bacteria of the families Ectothiorhodospiraceae and Chromatiaceae were predominant. Purple nonsulfur bacteria of the family Rhodobacteraceae, green filamentous bacteria Oscillochloris sp., and heliobacteria were also detected. According to preliminary data, no less than 15 species of APB occur in the studied lakes. Among them, three novel genera and four species have already been described. Identification of other isolates is still in progress. The lakes make an almost continuous series of fresh, brackish, and saline water bodies, varying in their degree of mineralization. It was demonstrated that the structure of APB communities was unaffected by salinity ranging from 5 to 40 g/l. At salt concentrations of lower than 5 g/l, the level of water mineralization became a limiting factor. Experiments with the isolated cultures showed that the APB were obligately dependent on the presence of carbonate ions in the medium. They were haloalkalitolerant or haloalkaliphilic. Thus, they are well adapted to the conditions of soda lakes with a high mineralization. It was demonstrated that soda lakes of the southeastern Transbaikal Region represent a special type of habitat which harbors a peculiar autochthonous microflora and differs from both highly mineralized soda lakes and shallow saline water bodies of the sea origin.  相似文献   

4.
The saline soda lakes of the Kulunda steppe (Altai krai) are small and shallow; they are characterized by a wide range of salinity and alkalinity, as well as by the extreme instability of their water and chemical regimes. Accumulations of anoxygenic phototrophic bacteria (APB) visible to the unaided eye were noted only in several lakes with high rates of sulfate reduction in their bottom sediments. However, enumeration of APB cells by inoculation revealed their presence in all 17 lakes. APB cell numbers varied from 103 to 109 CFU cm?3. In the APB communities of all lakes, purple sulfur bacteria of the family Ectothiorhodospi- raceae were predominant. In 14 out of the 17 lakes, purple nonsulfur bacteria of the family Rhodobacteraceae were also detected (103–107 CFU cm?3). Purple sulfur bacteria of the family Chromatiaceae were less abundant: Halochromatium sp. (104–107 CFU cm?3) were found in six lakes, while Thiocapsa sp. (104 CFU cm3) were detected in one lake. On the whole, the APB communities of the soda lakes of the Kulunda steppe were characterized by the low diversity and evenness of their species compositions, as well as by the pronounced dominance of the members of the family Ectothiorhodospiraceae. There was no correlation between the structures of the APB communities and alkalinity. However, the dependence of the species composition of APB (mainly ectothiorhodospiras) on water mineralization was revealed. High mineralization (above 200 g l?1) was a limiting factor that affected the APB communities on the whole, restricting the APB species diversity to extremely halophilic bacteria of the genus Halorhodospira.  相似文献   

5.
The structural features of a cyanobacterial mat from Lake Khilganta (Southeastern Transbaikal Region) developing at different values of salinity and pH were determined based on our long-term investigation of the natural community, as well as results obtained during experimentation with its laboratory analogue. At water mineralization of 40–50 g/l, Microcoleus chthonoplastes and Phormidium molle play a key role in the formation of the cyanobacterial mat. As water mineralization increases, the diversity of cyanobacteria in the natural mat increases as well, reaches its maximum at 80 g/l NaCl, and decreases at 100 g/l. In the laboratory community, Nodularia sp. prevailed. It was able to form matlike structures within a broad pH range and at a salinity of up to 50 g/l NaCl. As the water mineralization level increased up to 100 g/l or higher, a replacement of the dominant complexes occurred both in the laboratory and natural communities: cyanobacterial species were substituted with green algae.  相似文献   

6.
干旱、半干旱地区湖泊周围是盐渍化土壤的主要分布区,盐渍化是荒漠化的主要类型之一。目前,关于盐生植被的分布格局及群落多样性随着盐渍化程度加深的动态变化的研究仍很缺乏, 为阐释这种关系,作者在内蒙古干旱、半干旱地区选择吉兰泰(盐池)、乌梁素海、查干诺尔(碱矿)以及额吉诺尔(盐池)等4个湖泊,研究了其周围盐生植物群落的物种组成、分布特征以及群落结构的差异, 讨论了群落多样性沿盐分梯度的变化特点, 并在此基础上探讨了盐生植物群落对土壤盐分环境的指示意义。为建立群落耐盐值与群落多样性的关系,我们计算了群落耐盐值。结果表明, 盐生植物群落沿盐湖呈明显的环带状分布;随着土壤盐渍化程度的增加, 按照芨芨草群落(Comm. Achnatherum splendens)、盐爪爪群落(Comm. Kalidium foliatum)、盐角草群落(Comm. Salicornia europaea)和碱蓬群落(Comm. Suaeda glauca)的顺序演替, 而且物种种类趋向单一化, 群落结构趋向简单化。群落的物种多样性和群落间物种的替代速率都随土壤盐分的增加而减小, 而群落间物种的相似性则增加。区域性气候特点对盐生植物群落的特征也会产生一定的影响, 特别是在低盐渍化的条件下, 这种影响比较显著, 使得盐生植物群落体现出地带性的特点, 而随着土壤盐渍化程度的提高, 盐生植物群落的隐域性特征更为突出。因此, 这一地区的盐生植被又呈现出非常明显的地带性植被向非地带性植被过渡的特点。  相似文献   

7.
8.
Williams  W. D. 《Hydrobiologia》1998,381(1-3):191-201
The paper considers the extent to which salinity determines the structure of biological communities (composition and species richness and diversity) in saline lakes, i.e. inland bodies of water with salinities in excess of 3 g l-1. It also considers the extent to which oxygen, ionic composition, pH, hydrological patterns (degree of permanence and impermanence of water), geographical position, palaeoclimatic events, chance, human intervention, and biological interactions especially predation determine biological communities in salt lakes. It suggests that salinity is less significant as a determinant of community structure in salt lakes than has been assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
AIM: To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. METHODS AND RESULTS: All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. CONCLUSIONS: The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.  相似文献   

10.
pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity.  相似文献   

11.
The abundance and taxonomic and trophic structures of the community of planktonic heterotrophic nanoflagellates, as well as the quantitative distribution of bacteria as their main object of food, have been studied in six lakes of Karelia with differing pH values, concentrations and compositions of organic substances, and degrees of anthropogenic load. Thirty-eight species and forms of colorless flagellates from seven orders and groups of uncertain taxonomic statuses have been recorded. Most of them belong to the trophic group of bacteriodetritophages. The minimal abundance and the lowest diversity of flagellates have been documented in clear- and brown-water lakes with low pH values, and maximal values have been observed in the polluted Kondopoga Bay in Lake Onega.  相似文献   

12.
1. Community structures of planktonic ammonia‐oxidising archaea (AOA) and bacteria (AOB) were investigated for five high‐altitude Tibetan lakes, which could be classified as freshwater, oligosaline or mesosaline, to develop a general view of the AOA and AOB in lakes on the Tibetan Plateau. 2. Based on PCR screening of the ammonia monooxygenase α‐subunit (amoA) gene, AOA were present in 14 out of 17 samples, whereas AOB were detected in only four samples. Phylogenetic analyses indicated that the AOB communities were dominated by a unique monophylogenetic lineage within Nitrosomonas, which may represent a novel cluster of AOB. AOA, on the other hand, were distinct among lakes with different salinities. 3. Multivariate statistical analyses indicated a heterogeneous distribution of the AOA communities among lakes largely caused by lake salinity, whereas the uniform chemical properties within lakes and their geographical isolation may favour relatively homogeneous AOA communities within lakes. 4. Our results suggest a wide occurrence of AOA in Tibetan lakes and provide the first evidence of salinity‐related differentiation of AOA community composition as well as potential geographical isolation of AOA in inland aquatic environments.  相似文献   

13.
This research was focused on the selection, growth and identification of SRB from soils that were subjected to long-term activity of brine, and an evaluation of mineral phases formed during the biodegradation of organic compounds and sulphate reduction. Isolated communities of anaerobic microorganisms were incubated on Postgate C medium with lactate and/or ethanol as the sole carbon source and were adapted for growth at 4% NaCl. Active reduction of sulphates with simultaneous biodegradation of organic compounds was observed in all cultures. The largest reduction of sulphates was noted in cultures with lactate as the sole carbon source; it reached 1438 mg/L, which corresponds to a 43% reduction of sulphates introduced to the medium. SRB activity in the biodegradation of organic compounds varied between 20 and 80% and depended on the level of salinity of the environment in which the SRB communities were isolated, and on the electron donor applied. The presence of biotransformation products in the post-culture deposits in the form of elemental sulphur reflects the activity of the communities. Additionally, the influence of selected communities on the salinity index was analyzed. Active SRB communities decreased the salinity of the environment by as much as 50%. Sulphate-reducing bacteria are an important group of anaerobic microorganisms, especially considering their participation in such geological processes as mineral precipitation and mineralization of organic matter in extreme environmental conditions, including high salinity.  相似文献   

14.
Temperate shallow meso- to eutrophic lakes can exist in one of two alternative states with contrasting foodwebs, referred to as the clear-water and the turbid state. We describe the planktonic ciliate communities of such lakes based on a survey of 66 northwestern European lakes. Ciliates were enumerated and identified to species level according to the quantitative protargol staining technique. Ciliate biomass was on average twice as high in the turbid than in the clear-water lakes. The ciliate communities were dominated by oligotrichs and protostomatids, and no differences in functional composition or α-diversity could be detected between turbid and clear-water lakes, although β-diversity tended to be higher in the latter. At the species level, however, community structure strongly differed between turbid and clear-water lakes, and several indicator species could be identified for the different lake categories. Variation partitioning showed that nutrient status did not explain ciliate community structure independent of the alternative states, while lake area was identified as an additional structuring factor for the ciliate communities. These results stress the importance of the ecosystem structure in shaping ciliate communities in temperate shallow lakes and suggest that nutrient status has little direct effect on ciliate community structure in such lakes.  相似文献   

15.
  1. The North American Great Plains contains thousands of lakes that vary in salinity from freshwater to hypersaline. Paleolimnological studies show that salinity levels in these lakes are tightly linked with climate, and current projections point to a more arid future in the region due to natural and anthropogenic climate change, potentially influencing lake salinity.
  2. Many zooplankton species are sensitive to changes in salinity, and their position near the base of the aquatic food web makes it important to understand how they might respond to increasing salinity levels. Zooplankton communities in lakes with rising salinity levels may exhibit changes in structure, including a shift toward more salinity-tolerant species and a reduction in abundance, species richness, and diversity. However, it is possible that dispersal of zooplankton among lakes could mitigate such community changes when migrant populations replace sensitive zooplankton with those that are locally adapted to higher salinities.
  3. To test if dispersal could reduce salinity-induced changes in zooplankton communities, we ran a field enclosure experiment at a freshwater lake in southern Saskatchewan where we manipulated salinity levels and zooplankton dispersal. We evaluated how salinity and dispersal influenced species identities and relative abundances (community structure) using multivariate statistics and comparing taxonomic and functional compositions among the different treatments (richness, diversity, and evenness).
  4. We found that increasing salinity levels in our enclosures above that in our study lake resulted in lower zooplankton abundances and species richness levels, primarily due to the loss of cladoceran species. However, patterns in our multivariate analyses suggested that cladocerans were maintained in enclosures with salinity levels of 2.5 and 5.0 g/L when those enclosures received immigration from nearby lakes.
  5. In contrast, our univariate analyses failed to find evidence that immigration affected community structure (richness, diversity, evenness). The lack of significant statistical differences could suggest that dispersal does not have an effect, or it may have been a problem with statistical power, as a power analysis suggested that fairly large effect sizes would have been required to achieve statistical significance.
  6. Based on our results, we were unable to reach a definitive conclusion on the role that dispersal might play in buffering zooplankton communities against salinity-driven changes. However, our study provides two important insights for planning future work. First, our power analyses indicated that more replication may be needed given the variability among our experimental enclosures. Second, the patterns in our multivariate analyses suggested that cladocerans could be maintained in lakes undergoing salinity increases if they receive immigration from surrounding lakes with higher salinities. Future work examining how inter- and intraspecific salinity tolerance varies across lakes with a gradient of salinities would be helpful for understanding the role that dispersal might play in buffering against salinity-driven losses of cladoceran zooplankton.
  相似文献   

16.
The rates of photosynthesis and dark CO2 fixation were determined in 12 soda lakes of the Kulunda steppe. Characterization of the phototrophic communities was given, and the cell numbers of anoxygenic phototrophic bacteria (APB) were determined. The photosynthetic production in different lakes was substantially different, constituting from 0.01 to 1.32 g C m−2 day−1. The main part of carbon dioxide was assimilated in the process of oxygenic photosynthesis. Anoxygenic photosynthesis was recorded only in 5 of the 12 lakes studied. Its values varied between 0.06 and 0.42 g C m−2 day−1, constituting from 8 to 34% of the total photosynthetic activity. Anoxygenic photosynthesis was revealed in the lakes where the number of APB reached 107–109 CFU cm−3. Dark CO2 fixation constituted 0.01–0.15 g C m−2 day−1. Positive correlation was observed between the primary production value and water alkalinity. No relationship between productivity and water mineralization was revealed in the 30–200 g l−1 range, whereas an increase in salinity above 200 g l−1 suppressed the photosynthetic activity. The mechanisms of influence of the environmental factors on the rate of photosynthesis are discussed.  相似文献   

17.
We have studied the activity and composition of several geochemically significant physiological groups of bacteria in more than twenty alkaline salt lakes of the north-east Mongolia steppe with water salinity from 3 to 390 g l?1 and pH values ranging from 9.0 to 10.6. Active and diverse microbial communities have been found in most of the lakes. The methanotrophic bacteria were represented by the Type I members. Among the culturable forms of sulfur-oxidizing bacteria obligately chemolithoautotrophic and haloalkaliphilic representatives of the genera Thioalkalimicrobium and Thioalkalivibrio were detected in the sediments at high numbers (up to 106 cells ml?1). The largest population of anaerobic phototrophic bacteria was represented by purple sulfur bacteria of the Ectothiorhodospiraceae family. Salinity was the key factor in determining the activity and the composition of the microbial communities. The most diverse and active prokaryotic populations, including aerobic and anaerobic phototrophic, methanogenic, methanotrophic, sulfur-oxidizing, sulfate-reducing and nitrifying bacteria, were found in lakes with salinity less than 60 g l?1. In hypersaline lakes with a salinity >100 g l?1, the sulfur cycle remained active due to the activity of extremely halotolerant and alkaliphilic sulfur bacteria, while other important functional groups responsible for nitrification and methane oxidation processes were not detected. Overall, the prokaryotic communities of the Mongolian alkaline salt lakes represent an interesting new example of a diverse community of haloalkaliphilic bacteria well adopted to a broad salinity range.  相似文献   

18.
We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4 + at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures.  相似文献   

19.
The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg2+, K+, Cl, Na+, SO42−, and Ca2+) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO43− concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole communities along gradients of salinity and ionic concentrations.  相似文献   

20.
Aims Road effects from maintenance and traffic have the potential to alter plant communities, but the exact relationships between these effects and changes in plant community composition have not often been studied in diverse environments. To determine the direction and level of community composition changes in saline environment due to road effects, we conducted a study along roads of different ages and in nearby non-road (i.e. natural) areas in the Yellow River Delta, China. Additionally, to potentially elucidate the mechanisms underlying the changes in the richness and composition of plant communities along roads, we evaluated physiochemical changes in soil of roadside and non-road areas.Methods Floristic and environmental data were collected along roadside of different ages and nearby non-road areas. To evaluate plant communities at each site, six 2 m × 2 m quadrats were placed at 3-m intervals along roads and six quadrats were arranged randomly in non-road areas. To determine the difference in plant community composition between roadside and non-road areas, we measured species richness and the abundance of each species, examined species turnover and floristic dissimilarity between the two areas and positioned plant species and sites in an abstract multivariate space. Plant community (species richness, percentage of halophytes) and soil physicochemical properties (pH, salinity, moisture content, bulk density, nitrate and ammonium nitrogen concentration) were compared between roadside and non-road areas (young roadside vs. corresponding non-road areas, old roadside vs. corresponding non-road areas) by using t -tests. Classification and ordination techniques were used to examine the relationship between vegetation and related environmental variables in both roadside and non-road areas.Important findings For both the young and old roadside areas, species richness in roadside areas was significantly higher than in non-road areas and high floristic dissimilarity values indicated that roadside and non-road areas differed greatly in community composition. In both the young and old roadside areas, the plant communities in roadside areas had lower percentages of halophytes than non-road communities. Correspondence analysis and two-way indicator species analysis showed that halophytes dominated in the non-road areas, while a number of typical non-salt-tolerant species dominated in the roadside areas. Compared to non-road areas, activities associated with roads significantly decreased soil moisture, bulk density and salinity and increased soil pH and nitrate content. Forward selection for the environmental variables in canonical correspondence analysis showed that soil salinity was the most important factor related to the variation of species composition between roadside and non-road areas. Our study demonstrates that road effects have a significant impact on the associated vegetation and soil, and these changes are consistent across roads of different ages in our system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号