首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sequence analysis by the automated Edman degradation shows that dopamine β-hydroxylase (dopamine β-monooxygenase; EC 1.14.17.1) from bovine adrenal medulla contains equal amounts of NH2-terminal alanine and serine residues. The sequence data are in agreement with the proposal that this enzyme consists of two types of polypeptide chains which are identical in the NH2-terminal ends, except that one of the chains lack the NH2-terminal tripeptide Ser-Ala-Thr.  相似文献   

2.
The amino acid sequences near the amino termini of human pepsin (34 residues) and gastricsin (24 residues) and the acid protease from Rhizopus chinensis (27 residues) have been determined using automated Edman degradation. From these results three additional observations were made. First, two structural variants have been observed for human gastricsin and for the Rhizopus protease. Both cases are apparently genetic in origin. Second, a stretch of sequence in the Rhizopus protease, residues 14 to 26, is highly homologous to the known sequence of porcine pepsin at the region of residues 11 to 23. Third, the sequences of the NH2-terminal region of human pepsin and gastrisin are homologous.  相似文献   

3.
Two proteins (A and B) from Escherichia coli are required for the synthesis of the NAD precursor quinolinate from aspartate and dihydroxyacetone phosphate. Mammalian liver contains a FAD linked protein which replaces E. coli B protein for quinolinate synthesis. D-aspartic acid but not L-aspartic acid is a substrate for quinolinic acid synthesis in a system composed of the B protein replacing activity of mammalian liver and E. coli A protein. In contrast the E. coli B protein-E. coli A protein quinolinate synthetase system requires L-aspartic acid as substrate. The previous report that L-aspartate was a substrate in the liver-E. coli system was due to contamination of commercially available [14C]L-aspartate with [14C]D-aspartate. These and other observations suggest that liver B protein is D-aspartate oxidase and E. coli B protein is L-aspartate oxidase.  相似文献   

4.
Escherichia coli contains two proteins (A and B) which together convert dihydroxyacetone phosphate and aspartate to quinolinic acid, a precursor of NAD. Although mammalian liver homogenate does not catalyze this reaction it contains a protein which will replace the B protein of the E. coli system. The behavior of the liver protein on Sephadex G-75 suggests it is much smaller than the E. coli B protein. Liver B protein also appears to contain tightly bound FAD while FAD is easily removed from the E. coli B protein. The pH optimum for the hybrid system E. coli A protein-liver B protein is 9.0 while in the pure E. coli system the optimum is pH 8.0. The hybrid system is inhibited by NAD to the same extent as the pure E. coli system.  相似文献   

5.
Messenger ribonucleic acid isolated from angler fish (Lophiusamericanus) islets of Langerhans was translated in the wheat germ cell-free protein synthesizing system containing different combinations of radioactive amino acids. Preproinsulin (~ 11,000 daltons) was identified amongst the translation products, by sodium dodecyl sulfate gel electrophoresis, and subjected to microsequencing techniques. The fish preproinsulin was found to possess an NH2-terminal signal peptide of 24 amino acids, with regions of homology to human, rat and chicken preproinsulin signal sequences.  相似文献   

6.
F1-ATPase was isolated from yeast S.cerevisiae. The constituent subunits 1 and 2 were purified by gel permeation chromatography, and their amino acid compositions determined. Both subunits have a similar composition except for 12 cystine, methionine, leucine, histidine, and tryptophan. When F1 is treated for three hours with 5′-p-[3H]fluorosulfonylbenzoyl adenosine in dimethylsulfoxide, 90% of the activity is lost. Disc gel electrophoresis of the modified complex showed that over 90% of the label was associated with subunit 2. A labelled peptide from a S.aureus digest of subunit 2 was isolated and sequenced. It had the following amino acid sequence: His-Try1-Asp-Val-Ala-Ser-Lys-Val-Gln-Glu, whereby Tyr1 is the modified amino acid residue. This sequence shows homology to other sequences obtained from maize, beef heart, and E.coli F1-ATPases.  相似文献   

7.
The 34-amino acid NH2-terminal fragment of human parathyroid hormone synthesized according to the sequence described by Niall et al. (1) is approximately 140 times more potent than the fragment synthesized according to Brewer et al (2) in activating human renal cortex adenylate cyclase. The potencies of the two peptides, relative to the effect of MRC standard bovine parathyroid hormone preparation 67342 in this system, were 5600 ± 600 (S.E.M.) units/mg and 40 ± 5 units/mg respectively. The potencies of the more active peptide and the corresponding bovine parathyroid hormone sequence were similar in this system and also in assays based upon the production of cyclic AMP by chick kidney both in vivo and in vitro.  相似文献   

8.
The partial amino acid sequences at the amino terminal of prothrombin and the intermediates of activation have been determined. These data indicate that the products of the first step of activation, whether derived from the action of factor Xa or thrombin, are identical. The data also show that the activation of prothrombin proceeds by the sequential cleavage of the amino terminal region of prothrombin and the intermediates, and confirm the mechanism of prothrombin activation as: NH2-Prothrombin-COOH Xa or thrombin NH2-Intermediate 3 + Intermediate 1-COOH; NH2-Intermediate 1-COOH Xa NH2-Intermediate 4 + Intermediate 2-COOH; NH2-Intermediate 2-COOH Xa NH2-A chain α-thrombin -S-S-B chain α-thrombin-COOH.Previous reports from this laboratory have demonstrated that the activation of prothrombin proceeds through several single-chain intermediates prior to the appearance of thrombin activity. (1) Subsequent studies have sequence of the prothrombin molecule can be deduced from the sequences of its activation intermediates and we are continuing our studies toward this goal.  相似文献   

9.
o-Phthalaldehyde (OPT) reacts with many biogenic compounds such as spermidine, histamine, histidine and peptides with NH2-terminal histidine, yielding intensely fluorescent condensation products. This communication examines the reaction conditions for the OPT-induced fluorescence of histidine and peptides with NH2-terminal histidine for the purpose of improving the sensitivity as well as the specificity of the assay of these compounds. Reaction with OPT at pH 11.2–11.5 and at 40°C for 10 min was found to be optimal for histidine. After cooling, the fluorescence was read at 360440nm (uncorrected instrument values). The method measures as little as 4–5 ng/ml. Peptides with NH2-terminal histidine were found to interfere with the assay whereas histamine, histidinol and spermidine did not. The optimum reaction and assay conditions for the OPT-induced fluorescence of the histidyl-dipeptides varied markedly from one peptide to another. As a group peptides with NH2-terminal histidine are best assayed by condensation with OPT at pH 11.8 at room temperature and with a reaction time of 30 min. Fluorescence should be read before as well as after acidification to pH 2.5. Details are given for the assay of individual histidyl-dipeptides.  相似文献   

10.
Synthesis of diphtheria toxin in E. coli cell-free lysate   总被引:7,自引:0,他引:7  
An E. coli cell-free lysate was used to translate C. diphtheriae RNA from nontoxinogenic C7(?), C7 infected with β tox+ corynebacteriophage, and C. diphtheriae strain PW8. De novo synthesis of toxin was detected by immune precipitation with antitoxin, ADP-ribosylation of mammalian elongation factor 2 and rabbit skin test. The results indicated that toxin is produced in the E. coli protein synthesizing system primed with RNA from cells infected with tox+ bacteriophage and is absent in systems primed with RNA from C7(?) cells.  相似文献   

11.
Chemically formylated Met-tRNAmMet and Met-tRNAfMet species from E.coli and yeast were tested for their capacity to serve as chain-initiators in a cell-free system from E.coli. In the presence of R 17 mRNA, initiation factors and E.coli ribosomes, all four Met-tRNAs could form functional initiation complexes as measured by ribosomal binding kinetics, fMet-puromycin formation and synthesis of a dipeptide fMet-Ala. Unformylated Met-tRNAfMet from E.coli displayed significantly less activity as a peptide chain-initiator than the formylated Met-tRNAmMet species from E.coli and yeast. Although the latter tRNAs were less effective initiators than the “physiological” initiator tRNAs, the data seem to indicate that a blocked α-amino group represents the major token of identification by which Met-tRNA is admitted to function in E.coli peptide chain initiation.  相似文献   

12.
Aspartate aminotransferases from pig heart cytosol and mitochondria, Escherichia coli B and Pseudomonas striata accepted L-cysteine sulfinate as a good substrate. The mitochondrial isoenzyme and the Escherichia enzyme showed higher activity toward L-cysteine sulfinate than toward the natural substrates, L-glutamate and L-aspartate. The cytosolic isoenzyme catalyzed the L-cysteine sulfinate transamination at 50% the rate of L-glutamate transamination. The Pseudomonas enzyme had the same reactivity toward the three substrates. Antisera against the two isoenzymes and the Escherichia enzyme inactivated almost completely cysteine sulfinate transamination activity in the crude extracts of pig heart muscle and Escherichia coli B, respectively. These results indicate that cysteine sulfinate transamination is catalyzed by aspartate aminotransferase in these cells.  相似文献   

13.
The sequence of 40 amino acid residues at the amino terminus of mitochondrial aspartate aminotransferase from chicken heart differs in only 2 positions from the sequence of mitochondrial aminotransferase of pig heart. Close structural similarity had been suggested by previous data on syncatalytic sulfhydryl modifications (Gehring H., and Christen P. (1975) Biochem. Biophys. Res. Commun. 63, 441–447). The cytosolic aspartate aminotransferases from the same two species have now been found to differ considerably in the mode of their syncatalytic modifications. The data suggest that the cytosolic and mitochondrial aspartate aminotransferases might have evolved at different organelle-specific rates.  相似文献   

14.
Solid phase synthesis of somatostatin-28   总被引:10,自引:0,他引:10  
The synthesis of ovine hypothalamic somatostatin-28 (Ser-Ala-Asn-Ser-Asn-Pro-Ala-Met-Ala-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH) has been accomplished by solid phase methodology. The structure of the synthetic material was verified by: (1) direct sequence analysis with a Beckman 89°C sequencer, (2) correlation of the amino acid analyses of the isolated tryptic peptide fragments with their theoretical compositions, and (3) comparison, using high performance liquid chromatography, of the synthetic methionine-sulfoxide and methionine-sulfone modified NH2-terminal peptides (residues 1–11) with the corresponding tryptic fragment from somatostatin-28.  相似文献   

15.
Amino and carboxy terminal sequences of the DNA-binding protein HU from a cyanobacterium have been determined. The partial amino acid sequence of the cyanobacterial protein is compared to that of the corresponding protein from E. coli. A high degree of similarity in primary structure is detected. The results are interpreted in terms of the large evolutionary distance between E. coli and cyanobacteria to suggest that the protein HU is, like eukaryotic histones, highly conserved in primary structure.  相似文献   

16.
Ribothymidine, generally considered a universal nucleotide in tRNA, is completely absent in five specific wheat embryo tRNAs. These consist of two species of glycine tRNA and three species of threonine tRNA. These tRNAs, all extensively purified, are acceptable substrates for E. coli - ribothymidine forming-uracil methylase, which produces one mole of ribothymidine per mole of tRNA. These five tRNAs account for about 90% of the wheat embryo tRNAs which are substrates for this methylase. Nucleotide sequence analysis of one of these tRNAs, tRNAGlyI, confirmed both the complete absence of ribothymidine at position 23 from the 3′end, and the presence of uridine at that site instead. In addition, it is shown that methylation with E. coli uracil methylase quantitatively converts uridine at position 23 to ribothymidine, while no other uridine in the molecule is affected.Using E. coli uracil methylase as an assay we have detected this class of ribothymidine lacking tRNA, in each case consisting of a few specific species, in other higher organisms, such as wheat seedling, fetal calf liver and beef liver, in addition to wheat embryo. We could not detect this class of tRNA in E. coli or yeast tRNA.  相似文献   

17.
Soluble extracts of Saccharomyces cerevisiae and Blastocladiella emersonii were found to catalyze the specific transfer of arginine from a mixture of [14C] aminoacyl-tRNAs into protein. Arginine transfer was stimulated by bovine serum albumin. Glu-Ala, Asp-Ala and cystinyl-bis-Ala inhibited incorporation into protein, whereas dipeptides with other NH2-terminal residues linked to alanine did not. These results indicate the presence of an enzyme in eucaryotic protists with the same donor and acceptor specificity as mammalian arginyl-tRNA-protein transferase.  相似文献   

18.
During the process of transformation Haemophilusinfluenzae cells bind its own DNA but little or no foreign DNA. This specificity for recognition of DNA was studied by cloning Haemophilus DNA in E. coli. Haemophilus DNA fragments were cloned using plasmid pBR322 as a vector. The fragment cH7 cloned in pBR322 was found to be homologous to Haemophilus DNA and shown to bind irreversibly to competent Haemophilus cells. The fact that cH7 isolated from E. coli lacks Haemophilus modification leads to the conclusion that modification does not play a role in the uptake mechanism. Uptake specificity is a function of recognition sequences that reside in DNA itself.  相似文献   

19.
Nucleotide sequence comparison of tRNAs aminoacylated by yeast phenylalanyl tRNA synthetase (PRS) have lead to the proposal that the specific nucleotides of the dihydrouridine (diHU) stem region and adenosine at the fourth position from the 3′ end are involved in the PRS recognition site. Kinetic analysis and enzymatic methylation have shown that the size of the diHU loop and the methylation of guanine at position 10 from the 5′ end both directly affect the PRS aminoacylation kinetics. E. coli tRNA1A1a, which is aminoacylated by PRS, should therefore have 1- the specific nucleotides of the diHU stem region and, 2- adenosine at position 4 from the 3′ end. The PRS aminoacylation kinetics of this tRNA indicates that this molecule 3- has a diHU loop of 8 nucleotides and 4- has an unmethylated guanine at position 10 from the 5′ end. We report here the complete sequence of E. coli tRNA1A1a and confirmation of each of these four predictions.  相似文献   

20.
Energy-dependent concentrative uptake of 14CH3NH3+ by cells of Escherichia coli provides preliminary evidence for one or more transport systems for NH4+ uptake. NH4+, but not glutamic acid, inhibited the uptake of 14CH3NH3+. Varying the pH for the uptake assays exposed two apparent systems: one maximally functioning at pH 7 that was strongly inhibited by cyanide or by the uncoupler m-chlorophenyl carbonylcyanide hydrazone and another maximally functioning at pH 9 and resistant to cyanide or m-chlorophenyl carbonylcyanide hydrazone. Kinetic analysis showed considerable experimental variability from day to day. Often simple Michaelis-Menten kinetics were not followed, but NH4+ was reproducibly a stronger inhibitor of uptake of 14CH3NH3+ than was nonradioactive CH3NH3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号