首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular superoxide dismutase in the vascular system of mammals.   总被引:11,自引:3,他引:8       下载免费PDF全文
NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.  相似文献   

2.
Fura-2 imaging microscopy was used to study [Ca2+]i in nerve growth factor-differentiated PC12 cells exposed to agonists (bradykinin, carbamylcholine, and ATP) binding to receptors coupled to polyphosphoinositide hydrolysis. With all the treatments employed, the response to an individual agonist was often incomplete, i.e., composed of either release from intracellular stores or influx only. In individual cells the responses were closely similar when only one and the same agonist was employed, and markedly heterogeneous, with considerable variation of the release/influx ratio, when different agonists were delivered in sequence. In a recently isolated PC12 cell clone, heterogeneity of the receptor-induced [Ca2+]i responses was markedly lower than in the overall population, although the release/influx ratio was still variable. We conclude that the large response heterogeneity observed in the overall PC12 cell population is due (a) to the coexistence of multiple clones; and (b) to the variable activation of intracellular transduction mechanisms.  相似文献   

3.
The dependency of normal cell proliferation on adequate extracellular Ca2+ levels was further investigated by determining the role of Ca2+ influx in epidermal growth factor (EGF)-induced rat liver epithelial (T51B) cell DNA synthesis. Fura-2-loaded T51B cells responded with an increase in [Ca2+]i to EGF (5-50 ng/ml) that was blocked by low (25 microM) extracellular Ca2+ or by pretreatment with 50 microM La3+ to inhibit plasma membrane Ca2+ flux. Confluent T51B cells treated for 24 h with EGF (0.1-50 ng/ml) dose-dependently incorporated [3H]-thymidine into cell nuclei. Low extracellular Ca2+ or addition of La3+ prevented the EGF-stimulated rise in labeled nuclei, indicating that a movement of Ca2+ into the cell was required for DNA synthesis. This was supported by our findings that bradykinin, which induced a rise in [Ca2+]i by opening plasma membrane Ca2+ channels in T51B cells (but not A23187, thrombin or ATP, which raise [Ca2+]i primary through mobilization of intracellular Ca2+ stores), potentiated DNA synthesis stimulated by submaximal doses of EGF. Potentiation of the action of EGF by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), indicates that activation of protein kinase C and an influx of Ca2+ share a common mechanism for initiating DNA synthesis.  相似文献   

4.
The epidermal growth factor-induced calcium signal in A431 cells   总被引:24,自引:0,他引:24  
Addition of epidermal growth factor (EGF) to human A431 cells causes a 2-4-fold increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured by quin-2 fluorescence. The EGF effect is rapid but transient: [Ca2+]i reaches a maximum within 30-60 s and then returns to its resting value (182 +/- 3 nM) over a 5-8-min period. The EGF-induced [Ca2+]i rise is completely dependent on extracellular Ca2+, is abolished by La3+ and Mn2+, and is not accompanied by changes in membrane potential (mean values of -64 mV). Serum also elicits a transient [Ca2+]i rise in A431 cells, but this response is not dependent on the presence of extracellular Ca2+. The tumor promoter 12-O-tetradecanoylphorbol 13-acetate completely inhibits the EGF- and serum-induced increases in [Ca2+]i without affecting basal [Ca2+]i levels. Our results, together with previous 45Ca2+ uptake data (Sawyer, S. T., and Cohen, S. (1981) Biochemistry 20, 6280-6286), suggest that while serum factors trigger the release of Ca2+ from internal stores, EGF acts by opening a voltage-independent Ca2+ channel in the plasma membrane. The data further suggest a role for protein kinase C in attenuating the Ca2+-mobilizing mechanisms of EGF and serum.  相似文献   

5.
Release of Ca2+ from intracellular stores was studied in the parent PC12 cell line and in recently isolated clones sensitive or insensitive to caffeine. In the caffeine-sensitive cells the cytosolic free Ca2+ concentration ([Ca2+]i) responses by the xanthine drug and by stimulants of receptors coupled to inositol 1,4,5-trisphosphate (Ins-P3) generation (bradykinin, ATP) depend on separate pathways because 1) caffeine does not stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate and 2) Ca(2+)-induced Ca2+ release, the process activated by caffeine, plays no major role in the Ins-P3-induced Ca2+ mobilization. Although distinct, these two mechanisms converge onto the same Ca2+ store. In fact 1) the [Ca2+]i responses by receptor agonists and caffeine were not additive; 2) either type of agent reduced (up to complete inhibition) the response to a subsequent administration of the same or the other agent; 3) all these responses were prevented by selective Ca2+ ATPase blockers; 4) ryanodine, which affects the intracellular Ca2+ channel sensitive to caffeine, also induced depletion of the receptor-sensitive Ca2+ pool; 5) in the 10 PC12 clones tested, sensitivity to caffeine paralleled ryanodine sensitivity. Therefore, PC12 cells, similar to some smooth muscle fibers but at variance with neurons and other secretory cells, express a single, rapidly exchanging Ca2+ store in which two distinct intracellular Ca2+ channels, i.e. the receptors for caffeine-ryanodine and Ins-P3, appear to be colocalized.  相似文献   

6.
To determine the role of calcium in the action of insulin-like growth factor II (IGF-II), we have examined the effect of multiplication stimulating activity, the rat IGF-II, on cytoplasmic-free calcium concentration, [Ca2+]c, in aequorin-loaded Balb/c 3T3 cells. IGF-II does not cause any change in [Ca2+]c in quiescent cells. By contrast, IGF-II induces changes in [Ca2+]c in platelet-derived growth factor(PDGF) - pretreated competent cells: when competent cells are incubated with epidermal growth factor (EGF) for 10 min, subsequent IGF-II induces an immediate increase in [Ca2+]c. Without EGF treatment, IGF-II does not cause any increase in [Ca2+]c. The priming action of EGF is time dependent, requiring approximately 10 min for the maximum effect. The IGF-II-mediated increase in [Ca2+]c is totally dependent on extracellular calcium and is blocked by lanthanum. When DNA synthesis in PDGF-treated competent cells is assessed by measuring [3H]thymidine incorporation, IGF-II by itself has only a small effect. Likewise, a brief treatment with EGF results in only a small increase in [3H]thymidine incorporation. By contrast, in competent cells briefly treated with EGF, IGF-II causes a marked stimulation of [3H]thymidine incorporation. These results indicate that IGF-II increases [Ca2+]c in competent Balb/c 3T3 cells treated with EGF by stimulating calcium influx and that IGF-II-stimulated calcium influx may be related causally to its action on cell proliferation.  相似文献   

7.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

8.
A comparison of the effect of platelet-derived growth factor (PDGF) and bombesin on intracellular Ca2+ stores was carried out in Swiss 3T3 cells loaded with Fura-2. It was found that the tumor promoter thapsigargin (Tg) almost completely inhibited both the PDGF- and the bombesin-induced intracellular Ca2+ concentration ([Ca2+]i) rise, indicating that the two mitogens mobilize Ca2+ from intracellular pool(s) sensitive to the tumor promoter. It was also found that pre-treatment with PDGF almost totally and persistently (up to at least 30 min) inhibited the bombesin-, Tg- and ionomycin-induced rise in [Ca2+]i, whereas pre-treatment with bombesin had only a partial inhibitory effect on the PDGF, Tg and ionomycin [Ca2+]i response, both in the absence and in the presence of external Ca2+. On the other hand, vasopressin and bradykinin, which also stimulate hydrolysis of phosphoinositides in these cells, did not affect the [Ca2+]i response induced by the same agents. These results indicate that, despite the poor production of inositol 1,4,5-trisphosphate (InsP3), PDGF was capable of totally discharging and maintaining discharged the InsP3-sensitive stores of intracellular Ca2+, regardless of whether extracellular Ca2+ was present in the medium. Bombesin only partially caused this effect. On the contrary, bradykinin and vasopressin, after releasing intracellular Ca2+ allowed an almost total refilling of the pools. It is interesting to note that, at variance with PDGF and bombesin, neither bradykinin nor vasopressin are able to induce a mitogenic response in Swiss 3T3 cells.  相似文献   

9.
The effects of epidermal growth factor (EGF) on membrane potential were investigated in suspensions of the following three cell types endowed with a large complement of specific receptors: EGFR-T17 (a clone of mouse NIH-3T3 fibroblasts overexpressing EGF receptors); A431 and KB (two human carcinoma lines). In all these lines EGF induced a rapid and marked hyperpolarization constituted by an initial peak (in all three cell lines) and a subsequent sustained plateau phase, concomitant with the well-known increase of [Ca2+]i. The time course and phorbol ester inhibitability of the membrane potential effects were the same as for the [Ca2+]i response. Experiments with Na+-free and chloride-free media excluded a major role of the latter ions in the EGF-induced hyperpolarization. In contrast, experiments with high K+ media, with the monovalent cation ionophore gramicidin and with Ca2+-free media together with either a Ca2+ ionophore (ionomycin, in A431 and EGFR-T17), or an agonist (bradykinin, in A431) addressed to a receptor coupled to phosphoinositide hydrolysis, were consistent with the involvement of Ca2+-activated K+ channels. The EGF-induced hyperpolarization was completely blocked by the K+ channel blocker, quinidine, and unaffected by a variety of other drugs. Patch clamping of individual EGFR-T17 cells confirmed the initial hyperpolarization (from approximately -30 mV, the resting potential, to -60, -80 mV) was due to activation of an outward current. This initial hyperpolarization was followed by fluctuations (period approximately 1 min) persisting as long as the cells could be analyzed. Thus, the changes of membrane potential appear to be not only novel members of the group of early events triggered by EGF in target cells but also long-lasting effects of the growth factor, which continue for unexpectedly long periods of time after EGF application.  相似文献   

10.
Platelet-derived growth factor (PDGF) and angiotensin II (AII) are thought to mediate their biological effects in vascular smooth muscle cells (VSMCs) by causing alterations in cytosolic free calcium ([ Ca2+]i). In this study we examine the pathways by which PDGF and AII alter [Ca2+]i in VSMCs. Addition of PDGF resulted in a rapid, transient, concentration-dependent increase in [Ca2+]i; this rise in [Ca2+]i was blocked completely by preincubation of cells with ethylene glycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) or CoCl2, by the voltage-sensitive Ca2+-channel antagonists verapamil or nifedipine, by 12-O-tetradecanoylphorbol-13-acetate (TPA), or by pertussis toxin. AII also caused an increase in [Ca2+]i; however, AII-stimulated alterations in [Ca2+]i displayed different kinetics compared with those caused by PDGF. Pretreatment of cells with 8-(diethylamine)-octyl-3,4,5-trimethyoxybenzoate hydrochloride (TMB-8), almost totally inhibited AII-induced increases in [Ca2+]i. EGTA or CoCl2 only slightly diminished AII-stimulated increases in [Ca2+]i. Nifedipine, verapamil, TPA, and pertussis toxin pretreatment were without effect on AII-induced increases in [Ca2+]i. PDGF and AII both stimulated increases in total inositol phosphate accumulation, although the one-half maximal concentration (ED50) for alterations in [Ca2+]i and phosphoinisitide hydrolysis differed by a factor of 10 for PDGF (3 X 10(-10) M for Ca2+ vs. 2.5 X 10(-9) M for phosphoinositide hydrolysis), but they were essentially identical for AII (7.5 X 10(-9) M for Ca2+ vs. 5.0 X 10(-9) M for phosphoinositide hydrolysis). PDGF stimulated mitogenesis (as measured by [3H]-thymidine incorporation into DNA) in VSMCs with an ED50 similar to that for PDGF-induced alterations in phosphoinositide hydrolysis. PDGF-stimulated mitogenesis was blocked by pretreatment of cells with voltage-sensitive Ca2+ channel blockers, TPA, or pertussis toxin. These results suggest that PDGF and AII cause alterations in [Ca2+]i in VSMCs by at least quantitatively distinct mechanisms. PDGF binding activates a pertussis-toxin-sensitive Ca2+ influx into cells via voltage-sensitive Ca2+ channels (blocked by EGTA, verapamil, and nifedipine), as well as stimulating phosphoinositide hydrolysis leading to release of Ca2+ from intracellular stores. AII-induced alterations in [Ca2+]i are mainly the result of phosphoinositide hydrolysis and consequent entry of Ca2+ into the cytoplasm from intracellular stores. Our data also suggest that changes in [Ca2+]i caused by PDGF are required for PDGF-stimulated mitogenesis.  相似文献   

11.
Ca2+ homoeostasis was investigated in pheochromocytoma neurosecretory (PC12) cells both before and after treatment with nerve growth factor, which induces a neuronal-like differentiation accompanied by a large increase in the number of muscarinic receptors. The resting concentration of free cytosolic Ca2+, [Ca2+]i, measured by the quin2 technique, was found to be higher and more variable in differentiated cells. Moreover, the [Ca2+]i rises induced by the Ca2+ ionophore ionomycin and by depolarizing concentrations of KC1 were greater and more transient. Exposure to carbachol induced modest, but long-lasting, [Ca2+]i rises, which were faster and greater in differentiated than in non-differentiated cells. These effects were due to the activation of the muscarinic receptor, because they were unaffected by nicotinic blockers (hexamethonium and D-tubocurarine) and completely eliminated by low concentrations of the muscarinic antagonists atropine and pirenzepine [IC50 (concn. causing 50% inhibition) = 2 and 60 nM respectively]. The muscarinic-receptor-dependent [Ca2+]i rises were the result of two concomitant processes: (1) redistribution of Ca2+ from cytoplasmic stores to the cytosol, possibly mediated by generation of inositol 1,4,5-trisphosphate as a consequence of the muscarinic-receptor-coupled hydrolysis of polyphosphoinositides, and (2) increased Ca2+ influx through a pathway of the plasmalemma insensitive to verapamil and thus different from the voltage-dependent Ca2+ channel. The existence of this second process was documented: (a) by the difference of the [Ca2+]i responses brought about by carbachol in Ca2+-containing and Ca2+-free media; (b) by the occurrence of [Ca2+]i rise and increased 45Ca accumulation in cells exposed to 1 mM-CaCl2 after having been treated for 2 min with carbachol in Ca2+-free medium; (c) by typical differences in the quin2 signal kinetics observed in parallel samples of PC12 cells loaded with different concentrations of the dye.  相似文献   

12.
In human prostate cancer PC3 cells, the effect of Y-24180, a presumed specific platelet activation factor (PAF) receptor antagonist, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2 as a Ca2+-sensitive fluorescent probe. Y-24180 (1-10 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. The [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of 10 microM Y-24180 on [Ca2+]i was reduced by 67%; conversely, depletion of Ca2+ stores with 10 microM Y-24180 abolished thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, inhibited ATP-, but not Y-24180-induced [Ca2+]i rise. Activation of protein kinase C with phorbol-12-myristate-13-acetate (PMA) enhanced Y-24180-induced [Ca2+]i rise by 70%. Overnight treatment with 0.1-10 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Collectively, these results suggest that Y-24180 acts as a potent and cytotoxic Ca2+ mobilizer in prostate cancer cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release. Since alterations in Ca2+ movement may interfere with many cellular signalling processes unrelated to modulation of PAF receptors, caution must be applied in using this reagent as a selective PAF receptor antagonist.  相似文献   

13.
Understanding the cellular response to hypoxia may help elucidate the role of altered oxidation in neuronal death or abnormal cell function. In PC12 cells, 30 min of chemical hypoxia (i.e., KCN) reduced ATP concentrations by 92%, but diminished viability by only 10%. Ten minutes of hypoxia increased cytosolic free calcium ([Ca2+]i) 2.5-fold above control, but after 30 min of hypoxia, [Ca2+]i was slightly below that of nonhypoxic cells. Short periods of hypoxia also exaggerated the K(+)-induced elevation of [Ca2+]i, but by 30 min these ATP-depleted cells reestablished a calcium gradient that was equal to nonhypoxic, K(+)-depolarized cells. Thus, 30 min of severe ATP depletion left [Ca2+]i and viability relatively unaffected. Nerve growth factor caused slight, but significant, improvements in ATP and viability of hypoxic cells, but had no effect on [Ca2+]i. Although [Ca2+]i was equivalent in control and hypoxic cells after 30 or 60 min, hypoxia abolished the K(+)-stimulated elevation of [Ca2+]i. The nerve growth factor induction of c-fos, an indicator of the genomic response, was diminished by approximately 80%. Thus, hypoxic PC12 cells with greatly reduced ATP stores maintained normal [Ca2+]i, but their ability to respond to external stimulation was impaired. Further, the reduced oxidation that occurs in the brain in a variety of pathological conditions may interfere with the cellular response to stimulation and growth factors.  相似文献   

14.
Exposure of pheochromocytoma (PC 12) cells to a time-varying 1.51 T magnetic field inhibited an increase in the intracellular Ca2+ concentration ([Ca2+]i) induced by addition of caffeine to Ca(2+)-free medium. This inhibition occurred after a 15-min exposure and was maintained for at least 2 h. [Ca2+]i sharply increased in cells loaded with cyclic ADP-ribose, and 2-h exposure significantly suppressed the increase. Addition of ATP induced a transient increase in intracellular Ca2+ release mediated by IP3 receptor, and this increase was strongly inhibited by the exposure. Results indicated that the magnetic field exposure strongly inhibited Ca2+ release mediated by both IP3 and ryanodine receptors in PC 12 cells. However, thapsigargin-induced Ca2+ influx (capacitative Ca2+ entry) across the cell membrane was unaffected. The ATP content was maintained at the normal level during the 2-h exposure, suggesting that ATP hydrolysis was unchanged. Therefore, Mg2+ which is known to be released by ATP hydrolysis and inhibit intracellular Ca2+ release may not relate the exposure-caused inhibition. Eddy currents induced in culture medium appear to change cell membrane properties and indirectly inhibit Ca2+ release from endoplasmic reticulum and other Ca2+ stores in PC 12 cells.  相似文献   

15.
A PC12 cell clone that responds to ATP with polyphosphoinositide hydrolysis and with a marked, biphasic intracellular free Ca2+ concentration ([Ca2+]i) response (composed by release from intracellular stores accompanied by stimulated influx from the medium), was pretreated with pertussis toxin. In the pretreated cells the responses induced by ATP were differently modified. Polyphosphoinositide hydrolysis and Ca2+ release were moderately inhibited whereas Ca2+ influx was enhanced. Pharmacological experiments revealed the influx enhancement to be sustained by neither voltage-gated nor second messenger-operated Ca2+ channels. Rather, a channel of the receptor-operated type activated by ATP (P2w receptor) appears to work under the negative control of a pertussis toxin-sensitive G protein, acting presumably by direct interaction with the channel in the plane of the plasma membrane.  相似文献   

16.
To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.  相似文献   

17.
The initial signal for thyroid cell proliferation is unknown. This is the first report to show that epidermal growth factor (EGF) produces inositol phosphates and increases cytoplasmic free calcium ([Ca2+]i) in the thyroid gland. In cultured porcine thyroid cells, 10 nM EGF produces a breakdown of phosphatidylinositol and stimulates inositol phosphate production. Ten nM EGF increases [Ca2+]i, measured using fura-2, a fluorescent Ca2+ indicator; the EGF-induced [Ca2+]i response occurs immediately, reaches a maximum within several seconds, and then slowly declines. EGF stimulates production of inositol phosphates, which seem to increase [Ca2+]i. Inositol phosphate production and an increase in [Ca2+]i after EGF-stimulation may function as an initial signal for thyroid cell proliferation.  相似文献   

18.
N Takasu  T Yamada  Y Shimizu 《FEBS letters》1987,225(1-2):43-47
Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol 13-acetate (TPA) and calcium ionophore A23187 increase cytoplasmic free calcium ([Ca2+]i) and stimulate arachidonic acid release and production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in cultured porcine thyroid cells. Addition of EGF, TPA or A23187 to the cells loaded with fura-2, a fluorescent Ca2+ indicator, causes an immediate increase in [Ca2+]i, which is the earliest event after mitogen stimulation. This [Ca2+]i response occurs immediately, reaching a maximum within several seconds. EGF, TPA and A23187 stimulate arachidonic acid release and PGE2 and 6-keto PGF1 alpha production; the maximum effects are obtained after 2-4 h incubation. EGF, TPA and A23187 increase [Ca2+]i and then stimulate arachidonic acid release and PG production.  相似文献   

19.
Spatial and temporal aspects of Ca2+ signaling were investigated in PC12 cells differentiated with nerve growth factor, the well known nerve cell model. Activation of receptors coupled to polyphosphoinositide hydrolysis gave rise in a high proportion of the cells to Ca2+ waves propagating non decrementally and at constant speed (2-4 microns/s at 18 degrees C and approximately 10-fold faster at 37 degrees C) along the neurites. These waves relied entirely on the release of Ca2+ from intracellular stores since they could be generated even when the cells were incubated in Ca(2+)-free medium. In contrast, when the cells were depolarized with high K+ in Ca(2+)-containing medium, increases of cytosolic Ca2+ occurred in the neurites but failed to evolve into waves. Depending on the receptor agonist employed (bradykinin and carbachol versus ATP) the orientation of the waves could be opposite, from the neurite tip to the cell body or vice versa, suggesting different and specific distribution of the responsible surface receptors. Cytosolic Ca2+ imaging results, together with studies of inositol 1,4,5-trisphosphate generation in intact cells and inositol 1,4,5-trisphosphate-induced Ca2+ release from microsomes, revealed the sustaining process of the waves to be discharge of Ca2+ from the inositol 1,4,5-trisphosphate- (and not the ryanodine-) sensitive stores distributed along the neurites. The activation of the cognate receptor appears to result from the coordinate action of the second messenger and Ca2+. Because of their properties and orientation, the waves could participate in the control of not only conventional cell activities, but also excitability and differential processing of inputs, and thus of electrochemical computation in nerve cells.  相似文献   

20.
We have identified the single PAC1 receptor variant responsible for Ca2+ mobilization from intracellular stores and influx through voltage-gated Ca2+ channels in bovine chromaffin cells and the domain of this receptor variant that confers coupling to [Ca2+]i elevation. This receptor (bPAC1hop) contains a 28-amino acid "hop" insertion in the third intracellular loop, with a full-length 171-amino acid N terminus. Expression of the bPAC1hop receptor in NG108-15 cells, which lack endogenous PAC1 receptors, reconstituted high affinity PACAP binding and PACAP-dependent elevation of both cAMP and intracellular Ca2+ concentrations ([Ca2+]i). Removal of the hop domain and expression of this receptor (bPAC1null) in NG108-15 cells reconstituted high affinity PACAP binding and PACAP-dependent cAMP generation but without a corresponding [Ca2+]i elevation. PC12-G cells express sufficient levels of PAC1 receptors to provide PACAP-saturable coupling to adenylate cyclase and to drive PACAP-dependent differentiation but do not express PAC1 receptors at levels found in postmitotic neuronal and endocrine cells and do not support PACAP-mediated neurosecretion. Expression of bPAC1hop, but not bPAC1(null), at levels comparable with those of bPAC1hop in bovine chromaffin cells resulted in acquisition by PC12-G cells of PACAP-dependent [Ca2+]i increase and extracellular Ca2+ influx. In addition, PC12-G cells expressing bPAC1hop acquired the ability to release [3H]norepinephrine in a Ca2+ influx-dependent manner in response to PACAP. Expression of PACAP receptors in neuroendocrine rather than nonneuroendocrine cells reveals key differences between PAC1hop and PAC1null coupling, indicating an important and previously unrecognized role of the hop cassette in PAC1-mediated Ca2+ signaling in neuroendocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号