首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Pigeonpea (Cajanus cajan), an important food legume crop in the semi-arid regions of the world and the second most important pulse crop in India, has an average crop productivity of 780 kg/ha. The relatively low crop yields may be attributed to non-availability of improved cultivars, poor crop husbandry and exposure to a number of biotic and abiotic stresses in pigeonpea growing regions. Narrow genetic diversity in cultivated germplasm has further hampered the effective utilization of conventional breeding as well as development and utilization of genomic tools, resulting in pigeonpea being often referred to as an ‘orphan crop legume’. To enable genomics-assisted breeding in this crop, the pigeonpea genomics initiative (PGI) was initiated in late 2006 with funding from Indian Council of Agricultural Research under the umbrella of Indo-US agricultural knowledge initiative, which was further expanded with financial support from the US National Science Foundation’s Plant Genome Research Program and the Generation Challenge Program. As a result of the PGI, the last 3 years have witnessed significant progress in development of both genetic as well as genomic resources in this crop through effective collaborations and coordination of genomics activities across several institutes and countries. For instance, 25 mapping populations segregating for a number of biotic and abiotic stresses have been developed or are under development. An 11X-genome coverage bacterial artificial chromosome (BAC) library comprising of 69,120 clones have been developed of which 50,000 clones were end sequenced to generate 87,590 BAC-end sequences (BESs). About 10,000 expressed sequence tags (ESTs) from Sanger sequencing and ca. 2 million short ESTs by 454/FLX sequencing have been generated. A variety of molecular markers have been developed from BESs, microsatellite or simple sequence repeat (SSR)-enriched libraries and mining of ESTs and genomic amplicon sequencing. Of about 21,000 SSRs identified, 6,698 SSRs are under analysis along with 670 orthologous genes using a GoldenGate SNP (single nucleotide polymorphism) genotyping platform, with large scale SNP discovery using Solexa, a next generation sequencing technology, is in progress. Similarly a diversity array technology array comprising of ca. 15,000 features has been developed. In addition, >600 unique nucleotide binding site (NBS) domain containing members of the NBS-leucine rich repeat disease resistance homologs were cloned in pigeonpea; 960 BACs containing these sequences were identified by filter hybridization, BES physical maps developed using high information content fingerprinting. To enrich the genomic resources further, sequenced soybean genome is being analyzed to establish the anchor points between pigeonpea and soybean genomes. In addition, Solexa sequencing is being used to explore the feasibility of generating whole genome sequence. In summary, the collaborative efforts of several research groups under the umbrella of PGI are making significant progress in improving molecular tools in pigeonpea and should significantly benefit pigeonpea genetics and breeding. As these efforts come to fruition, and expanded (depending on funding), pigeonpea would move from an ‘orphan legume crop’ to one where genomics-assisted breeding approaches for a sustainable crop improvement are routine.  相似文献   

5.
6.
7.
The expressed sequence tags (ESTs) of common bean were BLAST aligned with barred medic genome sequence and developed 1196 conserved intron spanning primers (CISPs) to facilitate genetic studies in legumes. Randomly selected 288 CISPs, representing loci on barrel medic genome, were tested on 10 selected members of legume family. On the source taxa, the highest single copy amplification success rates of 61.8% (barrel medic) and 56.2% (common bean) was obtained. The success rate of markers was 54.5% in cowpea followed by 53.5% in pigeonpea and chickpea, signifying cross taxon amplification and their potential use in comparative genomics. However, relatively low percentages of primer set amplified (40–43%) in soybean, urdbean and peanut. Further, these primers were tested on different varieties of chickpea, pigeonpea and cowpea. The PCR products were sequenced and aligned which resulted in detection of 26 SNPs and eight INDeLs in cowpea, seven SNPs and two INDeLs in chickpea and 27 SNPs and 14 INDeLs in pigeonpea. These SNPs were successfully converted in to size variation for gel-based genotyping. The CISP markers developed in this study are expected to aid in map saturation of legumes and in marker-assisted selection for accelerated crop improvement.  相似文献   

8.
9.
10.

Background  

Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs).  相似文献   

11.
12.
Pigeonpea (Cajanus cajan) is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety ??Asha??. The genome was assembled using long sequence reads of 454 GS-FLX sequencing chemistry with mean read lengths of >550?bp and >10-fold genome coverage, resulting in 510,809,477?bp of high quality sequence. Total 47,004 protein coding genes and 12,511 transposable elements related genes were predicted. We identified 1,213 disease resistance/defense response genes and 152 abiotic stress tolerance genes in the pigeonpea genome that make it a hardy crop. In comparison to soybean, pigeonpea has relatively fewer number of genes for lipid biosynthesis and larger number of genes for cellulose synthesis. The sequence contigs were arranged in to 59,681 scaffolds, which were anchored to eleven chromosomes of pigeonpea with 347 genic-SNP markers of an intra-species reference genetic map. Eleven pigeonpea chromosomes showed low but significant synteny with the twenty chromosomes of soybean. The genome sequence was used to identify large number of hypervariable ??Arhar?? simple sequence repeat (HASSR) markers, 437 of which were experimentally validated for PCR amplification and high rate of polymorphism among pigeonpea varieties. These markers will be useful for fingerprinting and diversity analysis of pigeonpea germplasm and molecular breeding applications. This is the first plant genome sequence completed entirely through a network of Indian institutions led by the Indian Council of Agricultural Research and provides a valuable resource for the pigeonpea variety improvement.  相似文献   

13.
近年来花生微卫星标记的开发取得了一定的进展, 初步揭示了花生在DNA水平上的遗传多样性。花生微卫星标记的开发途径主要包括通过构建小片段基因组文库开发基因组SSR标记, 根据花生EST序列开发EST-SSR标记, 根据豆科植物序 列信息和SSR标记开发花生SSR标记, 将SSR标记与其它分子标记结合开发新的DNA标记, 以及基于SSR核心序列开发ISSR标记。花生微卫星标记主要应用于遗传多样性研究、遗传图谱与品种指纹图谱构建以及分子标记辅助育种等领域。本文综述了花生SSR标记开发研究的进展及应用。  相似文献   

14.
15.
Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas EST-SSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performed using the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.  相似文献   

16.
Rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) is a warm season annual legume mainly grown in East Asia. Only scarce genomic resources are currently available for this legume crop species and no simple sequence repeat (SSR) markers have been specifically developed for rice bean yet. In this study, approximately 26 million high quality cDNA sequence reads were obtained from rice bean using Illumina paired-end sequencing technology and assembled into 71,929 unigenes with an average length of 986 bp. Of these unigenes, 38,840 (33.2%) showed significant similarity to proteins in the NCBI non-redundant protein and nucleotide sequence databases. Furthermore, 30,170 (76.3%) could be classified into gene ontology categories, 25,451 (64.4%) into Swiss-Prot categories and 21,982 (55.6%) into KOG database categories (E-value < 1.0E-5). A total of 9,301 (23.5%) were mapped onto 118 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database. A total of 3,011 genic SSRs were identified as potential molecular markers. AG/CT (30.3%), AAG/CTT (8.1%) and AGAA/TTCT (20.0%) are the three main repeat motifs. A total of 300 SSR loci were randomly selected for validation by using PCR amplification. Of these loci, 23 primer pairs were polymorphic among 32 rice bean accessions. A UPGMA dendrogram revealed three major clusters among 32 rice bean accessions. The large number of SSR-containing sequences and genic SSRs in this study will be valuable for the construction of high-resolution genetic linkage maps, association or comparative mapping and genetic analyses of various Vigna species.  相似文献   

17.
18.
花生微卫星标记的研究进展   总被引:3,自引:0,他引:3  
近年来花生微卫星标记的开发取得了一定的进展,初步揭示了花生在DNA水平上的遗传多样性。花生微卫星标记的开发途径主要包括通过构建小片段基因组文库开发基因组SSR标记,根据花生EST序列开发EST-SSR标记,根据豆科植物序列信息和SSR标记开发花生SSR标记,将SSR标记与其它分子标记结合开发新的DNA标记,以及基于SSR核心序列开发ISSR标记。花生微卫星标记主要应用于遗传多样性研究、遗传图谱与品种指纹图谱构建以及分子标记辅助育种等领域。本文综述了花生SSR标记开发研究的进展及应用。  相似文献   

19.
20.
The Fabaceae (legume family) is the third largest and the second of agricultural importance among flowering plant groups. In this study, we report the reconstruction of a composite comparative map composed of ten legume genomes, including seven species from the galegoid clade (Medicago truncatula, Medicago sativa, Lens culinaris, Pisum sativum, Lotus japonicus, Cicer arietinum, Vicia faba) and three species from the phaseoloid clade (Vigna radiata, Phaseolus vulgaris, Glycine max). To accomplish this comparison, a total of 209 cross-species gene-derived markers were employed. The comparative analysis resulted in a single extensive genetic/genomic network composed of 93 chromosomes or linkage groups, from which 110 synteny blocks and other evolutionary events (e.g., 13 inversions) were identified. This comparative map also allowed us to deduce several large scale evolutionary events, such as chromosome fusion/fission, with which might explain differences in chromosome numbers among compared species or between the two clades. As a result, useful properties of cross-species genic markers were re-verified as an efficient tool for cross-species translation of genomic information, and similar approaches, combined with a high throughput bioinformatic marker design program, should be effective for applying the knowledge of trait-associated genes to other important crop species for breeding purposes. Here, we provide a basic comparative framework for the ten legume species, and expect to be usefully applied towards the crop improvement in legume breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号