首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

2.
Inhibition of phosphodiesterase type 5 (PDE5) can relax systemic and coronary vessels by causing accumulation of cGMP. Both the endothelial dysfunction with decreased nitric oxide production and increased natriuretic peptide levels in congestive heart failure (CHF) have the potential to alter cGMP production, thereby influencing the response to PDE5 inhibition. Consequently, this study examined the effects of PDE5 inhibition with sildenafil in dogs with CHF produced by rapid ventricular pacing. CHF resulted in decreases of left ventricular (LV) systolic pressure, coronary blood flow, and the maximal first time derivative of LV pressure (LV dP/dt(max)) at rest and during treadmill exercise compared with normal, whereas resting LV end-diastolic pressure increased from 10 +/- 1.4 to 23 +/- 1.4 mmHg. Sildenafil (2 and 10 mg/kg per os) caused a 5- to 6-mmHg decrease of aortic pressure (P < 0.05), with no change of heart rate, LV systolic pressure, or LV dP/dt(max). Sildenafil caused no change in coronary flow or myocardial oxygen consumption in animals with CHF at rest or during exercise. In contrast to findings in normal animals, sildenafil did not augment endothelium-dependent coronary vasodilation in response to acetylcholine in animals with CHF. Furthermore, Western blotting showed decreased PDE5 protein expression in myocardium from failing hearts. These findings demonstrate that PDE5 contributes little to regulation of coronary hemodynamics in CHF.  相似文献   

3.
The effect of intravenous glutamic acid infusion (3 mg/kg/min) was studied during myocardial ischemia and reperfusion in anesthetized dogs. Left ventricular ischemia was induced by underperfusion of the anterior descending and circumflex coronary arteries. Glutamic acid reduced the ischemic contractile depression 2 min after a 60%-reduction of the coronary blood flow. The left ventricular systolic pressure was decreased by 9% versus 22%, dP/dt by 16% versus 29%, left ventricular systolic pressure heart rate product by 16% versus 31%. Reperfusion with glutamic acid improved the recovery of cardiac performance without any increase in myocardial oxygen consumption. Glutamic acid infusion resulted in a 2-fold augmentation of glutamate uptake by the ischemic myocardium. It led to cessation of ammonia release by the heart due to activation of glutamine synthesis, enhancement of alanine formation coupled with pyruvate utilization and did not change lactate production. The mechanisms of the protective action of glutamic acid are discussed.  相似文献   

4.
To determine whether endogenous opiates have a role in circulatory regulation during mild to moderate exercise, 11 chronically instrumented dogs were exercised on a treadmill up a 6% incline at 2.5 and 5.0 mph, each for 20 min, after treatment with either the opiate receptor antagonist naloxone (1 mg/kg bolus and 20 micrograms.kg-1.min-1 infusion) or normal saline. Naloxone increased plasma beta-endorphin and adrenocorticotropic hormone at rest but had no effect on resting heart rate, aortic pressure, cardiac output, left ventricular time derivative of pressure (dP/dt) and ratio of dP/dt at a developed pressure of 50 mmHg and the developed pressure (dP/dt/P), or plasma catecholamines. Plasma beta-endorphin and adrenocorticotropic hormone increased during exercise. In addition, graded treadmill exercise produced proportional increases in heart rate, cardiac output, aortic pressure, left ventricular dP/dt and dP/dt/P, and blood flow to exercising muscles, right and left ventricular myocardium, and adrenal glands. However, there were no differences in the circulatory responses to exercise between animals receiving naloxone and normal saline. Thus the endogenous opiate system probably does not play an important role in regulating the systemic hemodynamic and blood flow responses to mild and moderate exercise.  相似文献   

5.
Effect of methylene blue on cardiac output response to exercise in dogs   总被引:1,自引:0,他引:1  
To determine whether the increase in cardiac output during mild to moderate exercise is related to an increase in the tissue redox potential, we compared the responses of cardiac output, total body oxygen consumption, and arterial blood lactate-to-pyruvate ratio (a measure of NADH/NAD) to treadmill exercise between dogs treated with normal saline and those treated with a hydrogen acceptor, new methylene blue. Normal saline was infused into the left atrium in the first group of dogs at a rate of 0.38 ml/min throughout the treadmill exercise (2.5 mph and 5.0 mph on a 6% incline, each for 20 min). In the second group, methylene blue was administered as a loading dose (4 mg/kg) before exercise, followed by a continuous infusion (0.15 mg X kg-1 X min-1) throughout exercise. A similar infusion of methylene blue was given to a third group of dogs without exercise; it reduced the arterial lactate-to-pyruvate ratio from 6.70 +/- 0.35 to 4.12 +/- 0.27 but had no or little effects on cardiac output, heart rate, arterial pressure, and left ventricular dP/dt and (dP/dt)/P. Treadmill exercise doubled cardiac output and increased total body O2 consumption three- to fourfold in the first two groups but increased arterial blood lactate-to-pyruvate ratio only in group 1 (6.0 +/- 0.54 to 9.97 +/- 0.91). The relationship between cardiac output and total body O2 consumption was unaffected by the simultaneous administration of methylene blue during exercise. Groups 1 and 2 also did not differ in their heart rate, left ventricular dP/dt and (dP/dt)/P, and plasma catecholamine responses to exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Sildenafil, a selective inhibitor of phosphodiesterase type 5, produces relaxation of isolated epicardial coronary artery segments by causing accumulation of cGMP. Because shear-induced nitric oxide-dependent vasodilation is mediated by cGMP, this study was performed to determine whether sildenafil would augment the coronary resistance vessel dilation that occurs during the high-flow states of exercise or reactive hyperemia. In chronically instrumented dogs, sildenafil (2 mg/kg per os) augmented the vasodilator response to acetylcholine, with a leftward shift of the dose-response curve relating coronary flow to acetylcholine dose. Sildenafil caused a 6. 7 +/- 2.1 mmHg decrease of mean aortic pressure, which was similar at rest and during treadmill exercise (P < 0.05), with no change of heart rate, left ventricular (LV) systolic pressure, or LV maximal first time derivative of LV pressure. Sildenafil tended to increase myocardial blood flow at rest and during exercise (mean increase = 14 +/- 3%; P < 0.05 by ANOVA), but this was associated with a significant decrease in hemoglobin, so that the relationship between myocardial oxygen consumption and oxygen delivery to the myocardium (myocardial blood flow x arterial O(2) content) was unchanged. Furthermore, sildenafil did not alter coronary venous PO(2), indicating that the coupling between myocardial blood flow and myocardial oxygen demands was not altered. In addition, sildenafil did not alter the peak coronary flow rate, debt repayment, or duration of reactive hyperemia that followed a 10-s coronary occlusion. The findings suggest that cGMP-mediated resistance vessel dilation contributes little to the increase in myocardial flow that occurs during exercise or reactive hyperemia.  相似文献   

7.
The purpose of our study was to investigate the role of prostaglandins in the changes in myocardial function and peripheral and coronary vascular resistance which accompany a generalized increase in sympathetic tone caused by carotid baroreflex unloading in the anesthetized dog. Bilateral carotid artery occlusion (BCO) with heart rate held constant by electrical pacing (150 beats/min) resulted in increases in systolic, (33%) diastolic (40%), and mean (35%) arterial pressures, LV systolic pressure (33%) and left ventricular (LV) dP/dt (37%). After blockade of prostaglandin synthesis with indomethacin (N = 11) or meclofenamate (N = 6) the increases in systolic (41%), diastolic (45%), and mean (41%) arterial pressures, LV systolic pressure (39%), LV dP/dt (52%), and cardiac work caused by BCO were significantly greater, in spite of the initially higher baseline values (11-18%) following the administration of the drugs. In contrast, the changes in circumflex coronary blood flow and coronary vascular resistance to BCO were essentially the same before and after inhibition of prostaglandin synthesis. Systemic prostaglandin synthesis may, therefore, play a significant role in the control of systemic arterial pressure and myocardial function, most probably by modulating the release of norepinephrine from adrenergic nerve terminals, without adversely affecting coronary blood flow regulation.  相似文献   

8.
The interaction between myocardial function, oxygen consumption and energy production was examined in the left ventricular myocardium during various physiological conditions. Myocardial function was measured by both LV dP/dTmax and by local contractile tension. Coronary blood flow was measured from the coronary sinus; regional coronary blood supply was recorded using a thermistor placed on the epicardial surface. Intracellular oxygen balance was estimated using NADH fluorescence. Myocardial oxygen consumption and utilization of glucose, pyruvate, lactate and free fatty acids were calculated from their concentrations in the arterial and coronary sinus blood. The effects of tachycardia at 180 and 240 bpm, noradrenaline infusion (25 micrograms kg-1 min-1), and increased coronary blood flow caused by hypopneic respiration were examined. During pacing, contractile force, coronary flow and NADH fluorescence increased. At 240 bpm, the lactate/pyruvate ratio increased from 5.98 +/- 0.92 to 8.76 +/- 1.41 and NADH fluorescence increased from 50 to 71.7 +/- 3.73 (as compared to control), indicating impairment of myocardial oxygenation. Hypopneic respiration produced a marked elevation of coronary blood flow. Both noradrenaline infusion and hypopnea produced a decrease in both NADH fluorescence and the lactate/pyruvate ratio. No significant difference was found between the FORCE/ATP, FORCE/MVO2 and ATP/MVO2 ratios during pacing and noradrenaline. However, during hypopnea, the amount of ATP apparently formed (as calculated by substrate utilization assuming the formation of 3 ATP molecules per oxygen) was disproportionately greater than contractile force and oxygen consumption. It is suggested that this discrepancy may be due to the uncoupling of oxidative phosphorylation.  相似文献   

9.
It is not known how the angiotensin-converting enzyme (ACE) inhibitor and angiotensin II receptor blocker (ARB) attenuate heart failure (HF) in viable ischemic hearts. To assess HF in a rat coronary stenosis (CS) model, we administered vehicle and quinapril or candesartan (or both) orally for 12 wk. Compared with the sham group, the vehicle group showed impaired myocardial perfusion, impaired coronary endothelial nitric oxide (NO) function in vitro, exhausted myocardial mitochondrial respiration, larger left ventricular (LV) dimensions and lower ejection fraction, lower LV rate of pressure development over time (dP/dt), lower slopes of LV end-systolic pressure-dimension relations (ESPDRs), and increased myocardial fibrosis. Treatment with quinapril or candesartan ameliorated these parameters without modifying the epicardial CS severity. Moreover, their combination maintained similar myocardial perfusion, despite a trend toward lower blood pressure, and showed distinctive neurohumoral modulation, normalized mitochondrial respiration, and increased ESPDR slopes. Thus improved myocardial blood flow and coronary flow reserve by quinapril or candesartan are the key to alleviate CS-induced HF, and their combination may have a therapeutic significance partly through ameliorated mitochondrial respiration and improved LV systolic function.  相似文献   

10.
In vitro and in situ studies have proposed a potentiation of submaximal force production after myosin light chain 2 (P-light chain) phosphorylation in mammalian striated muscle. The purpose of this study was to ascertain the relationship between the augmentation in left ventricular pressure development and cardiac myosin P-light chain phosphorylation at different times during and after submaximal treadmill exercise involving adult female Sprague-Dawley rats. In vivo hemodynamic measurements were monitored with an indwelling high-fidelity solid-state pressure transducer. Exercise heart rate, peak left ventricular (LV) pressure, and rate of LV pressure development/relaxation (LV +/- dP/dt) were significantly elevated compared with a normal sedentary group (P less than 0.001). Peak LV pressure remained significantly elevated throughout 20 min of postexercise recovery (P less than 0.01), and heart rate, LV end-diastolic pressure, and LV +/- dP/dt returned rapidly to preexercise values. Corresponding to these in vivo hemodynamic changes, increased levels of P-light chain phosphorylation were observed during both exercise (16%, P less than 0.01) and subsequent recovery periods (14%, P less than 0.02) compared with the NC group. A quasi-temporal relationship was observed between postexercise peak LV pressure potentiation and P-light chain phosphorylation. These results demonstrate that cardiac myosin P-light chain phosphorylation is associated, in part, with the augmentation of peak LV pressure observed during both exercise and recovery.  相似文献   

11.
The left anterior descending coronary artery in anaesthetized greyhounds was perfused at constant pressure with blood pumped from the carotid artery. Phasic and mean coronary flow, left ventricular pressure, dP/dt, cardiac output, ECG, heart rate and systemic pressure were measured. Leukotriene (LT) D4 was administered into the left anterior descending coronary artery as a bolus injection. LTD4 caused dose-related reductions in coronary flow. Other parameters showed little immediate change although a gradual decrease in left ventricular pressure, dP/dt, cardiac output and systemic pressure occurred after administration of LTD4. Following intracoronary administration of LTD4 small surface haemorrhages were observed over the area perfused. The reduction in coronary flow was not inhibited by indomethacin.  相似文献   

12.
Previous in vivo and in vitro experiments have demonstrated increased cardiac contractility and increased total myocardial blood flow (Qmyocardial) when rats were exposed to normoxic 5-bar (500 kPa) ambient pressure. In the present study, regional blood flow was measured using the microsphere method on nine anaesthetized cats at surface and normoxic 5-bar (500 kPa) ambient pressure. Left ventricular pressure (LVP) and cardiac contractility, measured as peak left ventricular +dP/dt and -dP/dt were measured in six of the cats. Arterial pressure, heart rate and cardiac output remained unchanged after compression, but total Qmyocardial increased by 29% (P less than 0.01) and cerebral blood flow increased by 66% (P less than 0.05). At the same time +dP/dt and -dP/dt was increased by 83% and 102%, respectively (P less than 0.01), while LVP was enhanced by 14% (P less than 0.05). Except for a moderate decrease in partial pressure of oxygen, acid base status in arterial blood remained unchanged. The results indicate that the effects of increased ambient pressure on the heart are general physiological phenomena, which are not only limited to the laboratory rat.  相似文献   

13.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.  相似文献   

14.
We hypothesized that endothelin (ET) release during exercise may be triggered by alpha-adrenergic-receptor activation and thereby influence coronary hemodynamics and O(2) metabolism in dogs. Exercise resulted in coronary blood flow increases (to 1.88+/-0.26 from 1.10+/- 0.12 ml x min(-1) x g(-1)) and in a fall (P<0.01) in coronary sinus O(2) saturation (17.4+/-1.5 to 9.6+/-0.7 vol%), whereas myocardial O(2) consumption (MVO(2)) increased (109+/-13% from 145+/-16 microl O(2) min(-1) x g(-1)). Tezosentan, a dual ET(A)/ET(B)-receptor blocker, slightly reduced mean arterial pressure (MAP) and increased heart rate throughout exercise. The relationship between coronary sinus O(2) saturation and MVO(2) was shifted upward (P<0.05) after tezosentan administration; i.e., as MVO(2) increased during exercise, coronary sinus O(2) saturation was disproportionately higher after ET-receptor blockade. After propranolol, tezosentan resulted in significant decreases (P<0.05) in left ventricular pressure, the first derivative of left ventricular pressure over time, and MAP during exercise. As MVO(2) increased during exercise, coronary sinus O(2) saturation levels after tezosentan became superimposable over those observed before ET-receptor blockade. Thus dual blockade of ET(A)/ET(B) receptors alters coronary hemodynamics and O(2) metabolism during exercise, but ET activity failed to increase beyond baseline levels.  相似文献   

15.
Recent data reported from this laboratory have documented myocardial functional depression in endotoxin shock. The purpose of the present study was to determine the effects of insulin on the dysfunctioning canine myocardium subjected to lethal endotoxin shock. Experiments were conducted on isolated working left ventricular preparations in which LD90-100 endotoxin was administered prior to, or following, isolation of the heart. Determinations of myocardial performance were conducted under the conditions of controlled mean aortic pressure and cardiac output. Myocardial dysfunction occurred between 2 and 6 h postendotoxin, as evidenced by significantly increased left ventricular end-diastolic pressure, decreased power, and depressed negative dP/dt, although blood glucose concentrations were maintained at control values. Intraatrial infusions of insulin at rates of 6 U/min reversed all signs of myocardial dysfunction. During insulin infusion, heart rates decreased (p less than 0.02) and myocardial lactate uptake increased (p less than 0.02), while oxygen uptake and coronary blood flow were insignificantly altered.  相似文献   

16.
To determine whether changes in heart rate and aortic systolic pressure contribute equally to the determination of left ventricular myocardial oxygen consumption, we independently varied heart rate and pressure and compared the resultant oxygen consumption for similar rate-pressure products. In 6 young lambs which underwent atrioventricular node ablation, we varied heart rate by ventricular pacing at 250 beats/min, 300 beats/min, and 120 beats/min while aortic pressure remained stable and varied aortic systolic pressure by infusion of phenylephrine (to 132 +/- 15 mm Hg and 155 +/- 14 mm Hg) and by infusion of sodium nitroprusside (to 79 +/- 6 mm Hg) while heart rate was maintained stable at 200 beats/min. The 3 levels of change in aortic systolic pressure were chosen so that the ratepressure product during the pressure changes matched the rate-pressure product during the heart rate changes. We found that left ventricular myocardial oxygen consumption was the same at all 3 levels of the rate-pressure product whether heart rate was changed and pressure remained stable or pressure was changed and heart rate remained stable. Also, the correlation between oxygen consumption and the rate-pressure product was similar for both heart rate and pressure changes. During nitroprusside infusion at a fixed heart rate, oxygen extraction was significantly lower than during pacing at a heart rate of 120 beats/min when the rate-pressure product was comparable because of the direct vasodilatory effects of nitroprusside. We conclude that heart rate and aortic systolic pressure contribute equally to left ventricular myocardial oxygen consumption at the same rate-pressure product, even though there may be differences in myocardial blood flow and oxygen extraction.  相似文献   

17.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.  相似文献   

18.
Traditionally when considering the pharmacologic basis of therapy in angina pectoris, attention is focussed on alterations of coronary blood flow. Yet the diseased coronary arteries in these patients often do not appear to be capable of responding to vasodilatory drugs. Since the pain of myocardial ischemia is relieved by a number of interventions without an increase in coronary blood flow, the concept herein considered is that angina pector is best viewed as an unfavorable relation between myocardial oxygen requirements and availability. Thus, the clinical value of the major antianginal agents is thought to be based importantly upon their actions to reduce myocardial oxygen consumption rather than to increase coronary blood flow.Sublingual nitroglycerin possesses a powerful dilator effect on veins which reduces venous return and thereby the size of the heart and intra-myocardial tension; thus myocardial oxygen requirements are diminished.The beta-adrenergic receptor blocking drug, propranolol (Inderal®), inhibits sympathetic stimulation of the heart at rest and during exercise. Thus, myocardial oxygen requirements are diminished by the reduction in heart rate and diminished contractility. As a result of this latter action, cardiac output is reduced and thereby arterial pressure and intramyocardial tension is lowered. In patients with advanced heart disease and borderline cardiac compensation, propranolol is hazardous because it removes the availability of one of the important reserve mechanisms for maintaining cardiac compensation—the sympathetic support of the failing heart.The introduction of electrical stimulation of the carotid sinus nerves as a means of therapy in patients with angina pectoris has provided a powerful tool for the treatment of patients with refractory ischemic pain.  相似文献   

19.
The rat infarct model is widely used in heart failure research, but few echocardiographic indexes of left ventricular (LV) function are validated in this model. Accordingly, the objective of this study was to validate a 13-segment LV wall motion score index (WMSI) and the myocardial performance index (MPI) in infarcted rats. Twenty-nine male Wistar rats underwent left coronary artery ligation or sham operation and were evaluated with two-dimensional and Doppler flow echocardiography 8 wk later. After echocardiography, invasive indexes were obtained using a high-fidelity catheter. WMSI and MPI were correlated with the invasive and noninvasive measurements of LV function. WMSI and MPI significantly correlated directly with end-diastolic pressure (r=0.72 and 0.42 for WMSI and MPI, respectively) and the time constant of isovolumic relaxation (r=0.68 and 0.48) and inversely with peak rate of rise of LV pressure (+dP/dt; r=-0.68 and -0.50), peak rate of decline in LV pressure (r=-0.57 and -0.44), LV developed pressure (r=-0.58 and -0.42), area fractional shortening (r=-0.85 and -0.53), and cardiac index (r=-0.74 and -0.74). Stepwise linear regression analyses revealed that LV end-diastolic pressure, +dP/dt, area fractional shortening, and cardiac index were independent determinants of WMSI (r=0.994) and that cardiac index and +dP/dt were independent determinants of MPI (r=0.781). We conclude that the 13-segment WMSI and MPI are reproducible and correlate strongly with established echocardiographic and invasive indexes of systolic and diastolic function. These findings support the use of WMSI and MPI as indexes of global LV function in the rat infarction model of heart failure.  相似文献   

20.
This study compares the effects of perfluorochemical artificial blood versus whole blood on the systolic and diastolic function of regionally ischemic myocardial preparations. Regional ischemia was produced by ligation of the circumflex coronary artery in isolated, blood-perfused rabbit hearts. Three minutes after occlusion, half the hearts were switched from the blood perfusate to perfluorochemical artificial blood; the other half continued to be perfused with blood. Isovolumic left ventricular (LV) developed pressure, dP/dt and resting pressure were monitored before, and for 2 hours after coronary occlusion. After 90 minutes of regional ischemia, perfluorochemical-treated hearts exhibited significantly greater developed pressure than those perfused with blood (78 +/- 6% versus 61 +/- 5% of preligation values; P less than 0.05). At the end of the experiment, LV dP/dt was 21% greater in the perfluorochemical-perfused group than in the blood-perfused group (74 +/- 8% versus 53 +/- 10%; P less than 0.01). Perfluorochemical perfusion also preserved diastolic function by preventing the 58% increase in left ventricular chamber stiffness (i.e., resting pressure; P less than 0.01) associated with circumflex ligation. Thus, in the present model of regional ischemia, perfluorochemical artificial blood is significantly better than blood at maintaining both systolic and diastolic myocardial function after a major coronary artery has been occluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号