首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied transport of L-tryptophan, L-tyrosine and L-phenylalanine as factors contributing to homeostasis of these amino acids in preimplantation mouse conceptuses. Benzenoid amino acids were transported by the Na(+)-independent systems L and b0,+ in 1-cell conceptuses, and by these systems plus the Na(+)-dependent systems B0,+ and B in blastocysts. In addition, a component of Na(+)-independent tryptophan, tyrosine and phenylalanine transport in 1-cell and 2-cell conceptuses and in blastocysts resisted inhibition by L-leucine. The latter component of transport not only preferred benzenoid amino acids and in particular tryptophan as substrates, but it also was inhibited strongly and competitively by alpha-N-methyl-L-tryptophan. The leucine-resistant component of tryptophan transport also was inhibited strongly by N-ethylmaleimide and D-tryptophan, and it appeared to be inhibited weakly by 3-amino-endo-bicyclo[3.2.1]octane-3-carboxylic acid (BCO) but not by other amino acids tested as inhibitors. By these criteria, the leucine-resistant component of transport of benzenoid amino acids resembled system T in human red blood cells and rat hepatocytes. It is not entirely clear why preimplantation blastocysts have five good systems for transport of tryptophan. It is possible, however, that tryptophan homeostasis is particularly important during preimplantation development since it has been shown elsewhere that tryptophan availability in blood increases within one day after rat eggs are fertilized.  相似文献   

2.
Uptake of leucine, lysine, and arginine was predominantly Na(+)-independent in mouse conceptuses through the 8-cell stage of development, and two components of saturable transport were detected for each of these amino acids. Uptake of cationic substrates from solutions near 1 microM was inhibited most strongly by bulky cationic and zwitterionic amino acids whose carbon skeletons do not branch at the alpha or beta positions. By this criterion, system b0,+ accounted for most of the Na(+)-independent arginine and lysine transport in eggs and conceptuses throughout preimplantation development. A small, leucine-resistant, cation-preferring component of amino acid transport was also detected in these cells. Leucine uptake was inhibited most strongly by bicyclic, branched-chain or benzenoid, zwitterionic amino acids in eggs and conceptuses prior to formation of blastocysts. Therefore, it appeared to be taken up mainly by system L, while system b0,+ accounted for a smaller portion of leucine uptake during this developmental period. In blastocysts, in contrast, system L was less conspicuous, and system b0,+ was primarily responsible for Na(+)-independent leucine uptake. The Vmax values for transport of amino acids by system b0,+ increased by up to 30-fold in conceptuses between the 1-cell and blastocyst stages. In contrast, the Vmax value for leucine transport via system L decreased while the Km value increased between these two developmental stages. Although several explanations for these changes are possible, we favor the hypothesis that the density of system L transport sites in plasma membranes decreases while the number of system b0,+ sites increases during development of blastocysts from 1-cell conceptuses.  相似文献   

3.
The nature and ontogeny of Na(+)-dependent L-alanine transport was examined in mouse eggs and preimplantation conceptuses. Mediated L-alanine uptake was not detected in fertilized or unfertilized eggs, but a small amount of Na(+)-dependent L-alanine transport was detected in 2-cell conceptuses. Na(+)-dependent alanine transport was more rapid at the 8-cell stage of development, and more than 10-fold faster in blastocysts than in 8-cell conceptuses. Analog inhibition analyses were consistent with the interpretation that L-lysine-sensitive and L-lysine-resistant components of transport were present at the 2-cell, 8-cell and blastocyst stages of development. The range of amino acids and their analogs that inhibited the most conspicuous component of alanine transport in blastocysts was consistent with the conclusion that system B0,+ is largely responsible for L-alanine uptake in these conceptuses. Moreover, system B0,+, but not other known systems in blastocysts, became susceptible to activation as these conceptuses approached the time of implantation, so this activation could be involved in implantation. Although the data are consistent with the possibility that system B0,+ is also present in 2-cell and 8-cell conceptuses, the relatively slow L-alanine transport in conceptuses at these earlier stages of development precluded more detailed study of their ability to take up alanine. Similarly, the less conspicuous L-lysine-resistant component of L-alanine transport in blastocysts also may be present in conceptuses as early as the 2-cell stage. The L-lysine-resistant component of L-alanine transport could not be attributed to residual system B0,+ activity, however, because it was inhibited more strongly by trans-OH-L-proline than L-arginine, whereas the reverse was the case for system B0,+. Similarly, L-tryptophan and L-leucine each inhibited system B0,+ more strongly than L-serine or L-cysteine, whereas all four of these amino acids inhibited the L-lysine-resistant component equally well. Moreover, a Hofstee plot for L-alanine influx was consistent with the interpretation that at least two mediated components of Na(+)-dependent L-alanine transport are present in blastocysts. The less conspicuous component of L-alanine transport in blastocysts was relatively susceptible to inhibition by L-leucine and L-tryptophan, but it resisted inhibition by the 'model' system A substrate, MeAIB, and the system ASC inhibitors, L-penicillamine and cationic amino acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The ability of preimplantation rat conceptuses to take up several amino acids was examined under a variety of conditions, and the characteristics of uptake were compared to those determined previously for mouse conceptuses. Mediated leucine transport in two-cell rat conceptuses is Na(+)-independent and inhibited almost completely by 2-amino-endobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), so it resembles system L which predominates in two-cell mouse conceptuses. System L becomes less conspicuous than homoarginine-sensitive, Na(+)-independent leucine transport (provisionally designated system bo,+) by the time rat conceptuses develop into blastocysts, as is also the case for mouse conceptuses. In contrast to leucine transport, system bo,+ appears to be the most conspicuous transporter of cationic amino acids throughout preimplantation development of both species. A Na(+)-independent cation-preferring amino acid transport process also appears to be present in rat as well as in mouse conceptuses. Moreover, rat conceptuses resemble mouse conceptuses because Na(+)-dependent transport system Gly activity virtually disappears from them by the time they form blastocysts. Unlike mouse conceptuses, however, Na(+)-dependent system Bo,+ activity appears to be present throughout preimplantation development of rat conceptuses, whereas it has not been detected until at least the two-cell stage in the mouse. Although system Bo,+ becomes more conspicuous in mouse than in rat conceptuses by the time they form blastocysts, system Bo,+ activity appears to increase when blastocysts of both species are removed from the uterus just prior to implantation. The latter observation is consistent with the possibility that system Bo,+ activity is controlled, in part, by the uterus near the time of implantation, although further studies are needed to verify this possibility. Similarities as well as differences in the amino acid transport processes present in conceptuses of rats and mice may eventually be understood best in relation to the environments in which they develop in vitro and in situ.  相似文献   

5.
Glycine transport in mouse eggs and preimplantation conceptuses   总被引:3,自引:0,他引:3  
At least two Na+-dependent systems for glycine transport became detectable, while another became undetectable during preimplantation development of mouse conceptuses. Glycine was taken up by a process in eggs and cleavage-stage conceptuses which closely resembles system Gly. Mediated transport at these stages was more rapid at higher Cl- concentrations, sigmoidally related to the exogenous Na+ concentration, and strongly inhibited by sarcosine but not by amino acids with larger side chains. Moreover, neither Li+ nor choline could substitute for Na+ in stimulating glycine transport. System Gly was the only mediated process detected for glycine uptake in unfertilized and fertilized eggs and two-cell conceptuses, but two, less conspicuous, sarcosine-resistant, Na+-dependent components of transport also appeared to be present in eight-cell conceptuses. One of the latter components seemed to remain relatively inconspicuous when conceptuses formed blastocysts, while system Gly became undetectable. In contrast, the other less conspicuous component in eight-cell conceptuses appeared to become the most conspicuous transport process in blastocysts. The latter process, previously designated system B0,+, was shown here also to interact strongly with a broad scope of zwitterionic and cationic amino acid structures. Moreover, transport of glycine via system B0,+ was more rapid at higher Cl- concentrations, and this Na+-dependent process as well as Na+-independent leucine uptake were inhibited by choline. Furthermore, Na+-dependent amino acid transport in two-cell conceptuses and blastocysts was inhibited by 1.0 or 10 mM ouabain, but the inhibition was incomplete at both concentrations. Since Na+/K+-ATPase has not been detected in two-cell conceptuses, inhibition of amino acid transport by ouabain may not have been due solely to an effect on this enzyme. The level of system Gly activity decreased during the development of eight-cell conceptuses from eggs, and this decrease could contribute to an associated decline in intracellular glycine. Since other amino acids begin to compete strongly with glycine for transport when system B0,+ replaces system Gly in conceptuses, this qualitative change in transport activity may help account for a further decrease in the glycine content of conceptuses, reported elsewhere to occur after they form blastocysts.  相似文献   

6.
L-Glutamate and L-cystine appeared to compete for transport via a mediated Na(+)-independent transport process in 1- and 2-cell conceptuses. Not only did these substances competitively inhibit each others' uptake by conceptuses, but their Ki values for inhibition were about equal to their Km values for transport in 1-cell conceptuses. Moreover, the transport process interacted strongly with L-amino acids that had 3-6 atoms in a chain between their negatively charged groups, whereas it interacted weakly or not at all with amino acids that did not have these characteristics or that were N-methylated. Transport of anionic amino acids was not altered greatly by pH in the range 4.5-8.0, but transport of L-cystine was much faster at higher pH values. The slower cystine transport at lower pH values was due primarily to protonation of its second amino group. A small increase in the degree of deprotonation of cystine's carboxyl groups also probably contributed slightly to its faster transport at higher pH values. By all of these criteria, the transport process in conceptuses appears to be a form of amino acid transport system xc-. System xc- activity was several-fold higher in 1- than in 2-cell conceptuses. Similarly, L-glutamate uptake by unfertilized eggs was relatively rapid, whereas it was much slower in immature, fully-grown oocytes. System xc- activity in 1-cell conceptuses also appeared to increase in response to the oxidative stress of culture, whereas no such increase was observed for 2-cell conceptuses. We suggest that this transient increase in the activity of system xc- activity during development of 2-cell conceptuses from immature, fully-grown oocytes could help protect unfertilized and fertilized eggs from oxidative stresses in situ.  相似文献   

7.
Preimplantation mouse blastocysts were found to contain at least three mediated components of Na+-independent amino acid transport. The two less conspicuous components seemed to be selective for either cationic or zwitterionic substrates but were not characterized further or examined for multiple transport activities. L-Leucine and L-lysine competed strongly for uptake by the most conspicuous Na+-independent transport process detected in these conceptuses (referred to as component b0,+), and no further heterogeneity of transport activities was found within this component. A series of inhibitors of various strengths had about the same effect on component b0,+ when either leucine or lysine was the substrate, and uptake of each substrate was not affected significantly by changes in the pH between 6.3 and 8.0. Furthermore, the Ki values for mutually competitive inhibition of transport between leucine and lysine and their Km values for transport via component b0,+ were all on the order of about 100 microM. In addition, the Ki values for competitive inhibition of leucine or lysine uptake by valine were approximately 5 mM in both cases, and alanine appeared to be a similarly weak competitive inhibitor of leucine transport. Based on these results, component b0,+ prefers to interact with bulky amino acids that do not branch at the beta-carbon. Moreover, amino acids that branch at the alpha-carbon, such as the leucine analog 3-amino-endo-bicyclo[3.2.1]octane-3-carboxylic acid, were virtually excluded by this component. The substrate reactivity of component b0,+ is more limited than the Na+-dependent transport system B0,+ in blastocysts which accepts both these branched species and less bulky amino acids relatively well as substrates. Thus, mediated amino acid transport in the mouse trophoblast is clearly distinguishable from that in most other mammalian tissues that have been studied. Not only do component b0,+ and system B0,+ and system B0,+ fail to discriminate strongly between basic and zwitterionic substrates, but their relative reactivity with bicyclic amino acids, such as 3-amino-endo-bicyclo[3.2.1]octane-3-carboxylic acid, is the reverse of transport processes in other cell types where these amino acids react strongly with Na+-independent, but not Na+-dependent, systems.  相似文献   

8.
The most conspicuous, Na(+)-independent amino acid transport process in preimplantation mouse blastocysts was provisionally designated system b0,+ because it accepts some cationic and zwitterionic amino acids about equally well as substrates. Although system b0,+ is not Na(+)-stimulated, it has not been determined if it is inhibited by Na+, or if its activity is affected by most other ions. Therefore, we measured uptake of amino acids by blastocysts in isotonic solutions of different ionic and nonionic osmolites. Na(+)-independent L-leucine uptake was unaffected by the ion concentration, but L-lysine transport was several-fold faster in isotonic solutions of non-electrolytes than in similar solutions of inorganic and organic salts or zwitterions. The Km value for 'Na(+)-independent' L-lysine transport was about 10-fold higher in isotonic salt solutions than in solutions of nonionic osmolites, whereas the Km value for L-leucine transport was about the same in either type of solution. Therefore, inorganic and organic cations and the cationic portions of zwitterions appear to compete with cationic but not zwitterionic amino acids for system b0,+ receptor sites. The cation, harmaline, was a particularly strong competitive inhibitor of 'Na(+)-independent' L-lysine uptake by system b0,+, even in isotonic salt solutions, whereas it inhibited L-leucine uptake noncompetitively. Moreover, harmaline appeared to compete with inorganic cations for the lysine receptor sites of system b0,+. Harmaline also has been found by other investigators to competitively inhibit L-lysine uptake by the Na(+)-independent system asc1 in horse erythrocytes, whereas it noncompetitively inhibits alanine uptake by the same system. Similarly, harmaline noncompetitively inhibits L-alanine uptake by the Na(+)-dependent system ASC in human erythrocytes, but it appears to compete for binding with L-alanine's cosubstrate, Na+. In addition, others have found that the positively-charged side chains of cationic amino acids seem to take the place of Na+ needed near side chains in order for zwitterionic amino acids to be transported by systems ASC and y+. We conclude that system b0,+ may be similar to systems asc1, ASC and y+, and that each of these systems may be a variant of the same ancestral transport process. We speculate that since it appears to accept a broader scope of substrates and to interact with a wider variety of cations than do systems asc1, ASC or y+, system b0,+ may more closely resemble the proposed ancestral transport process than any of the other contemporary systems.  相似文献   

9.
Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na+-dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na+ dependent. Moreover, L-alanine and BCO met standard criteria for mutual competitive inhibition of the Na+-dependent transport of each other. The Ki for each of these amino acids as an inhibitor of transport of the other had a value similar to the value of its Km for transport. In addition, both 2-aminoendobicyclo [2,2,1]heptane-2-carboxylic acid (Ki approximately 1.0 mM) and L-valine (Ki approximately 0.10 mM) appeared to inhibit Na+-dependent transport of alanine and BCO competitively. Finally, alanine and L-lysine appeared to compete for the same Na+-dependent transport sites in blastocysts. For these reasons, we conclude that lysine, alanine, and BCO are transported by a common Na+-dependent system in blastocysts. In addition, the apparent interaction of the system with other basic amino acids, such as 1-dimethylpiperidine-4-amino-4-carboxylic acid, which has a nondissociable positive charge on its side chain, and L-arginine and L-homoarginine, whose cationic forms are highly predominant at neutral pH, suggests that the cationic forms of basic amino acids are transported by the wide-scope system.  相似文献   

10.
The uptake of taurine by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule was examined. In pars convoluta, the transport of taurine was characterized by two Na(+)-dependent (Km1 = 0.086 mM, Km2 = 5.41 mM) systems, and one Na(+)-independent (Km = 2.87 mM) system, which in the presence of an inwardly directed H(+)-gradient was able to drive the transport of taurine into these vesicles. By contrast, in luminal membrane vesicles from pars recta, the transport of taurine occurred via a dual transport system (Km1 = 0.012 mM, Km2 = 5.62 mM), which was strictly dependent on Na+. At acidic pH with or without a H(+)-gradient, the Na(+)-dependent flux of taurine was drastically reduced. In both kind of vesicles, competition experiments only showed inhibition of the Na(+)-dependent high-affinity taurine transporter in the presence of beta-alanine, whereas there was no significant inhibition with alpha-amino acids, indicating a beta-amino acid specific transport system. Addition of beta-alanine, L-alanine, L-proline and glycine, but not L-serine reduced the H(+)-dependent uptake of taurine to approx. 50%. Moreover, only the Na(+)-dependent high-affinity transport systems in both segments specifically required Cl-. Investigation of the stoichiometry indicated 1.8 Na+: 1 Cl-: 1 taurine (high affinity), 1 Na+: 1 taurine (low affinity) and 1 H+: 1 taurine in pars convoluta. In pars recta, the data showed 1.8 Na+: 1 Cl-: 1 taurine (high affinity) and 1 Na+: 1 taurine (low affinity).  相似文献   

11.
Uptake and inhibitory kinetics of [3H]L-threonine were evaluated in preparations of pig jejunal brush border membrane vesicles. Uptake of [3H]L-threonine under O-trans, Na+ gradient, and O-trans, Na(+)-free conditions was best described by high affinity transport (Km < 0.01 mM) plus a nonsaturable component. The maximal velocity of transport was 3-fold greater under Na+ gradient conditions. 100 mM concentrations of all of the dipolar amino acids and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid caused complete inhibition of [3H]L-threonine transport under Na+ gradient and Na(+)-free conditions. Imino acids, anionic amino acids, cationic amino acids, and methylamino-isobutyric acid caused significant partial inhibition of L-threonine uptake. Inhibitor concentration profiles for proline and lysine were consistent with low affinity competitive inhibition. The Ki values of alanine and phenylalanine approximated 0.2 and 0.5 mM, respectively, under both Na+ gradient and Na(+)-free conditions. These data indicate that the transport system available for L-threonine in the intestinal brush border membrane (system B) is functionally distinct from other amino acid transport systems. Comparison of kinetics parameters in the presence and absence of a Na+ gradient suggests that both partially and fully loaded forms of the carrier can function to translocate substrate and that Na+ serves to accelerate L-threonine transport by a mechanism that does not involve enhanced substrate binding.  相似文献   

12.
1. The occurrence and characterization of acidic amino acid transport in the plasma membrane of a variety of cells and tissues of a number of organisms is reviewed. 2. Several cell types, especially in brain, possess both high- and low-affinity transport systems for acidic amino acids. 3. High-affinity systems in brain may function to remove neurotransmitter amino acid from the extracellular environment. 4. Many cell systems for acidic amino acid transport are energized by an inwardly directed Na+ gradient. Moreover, certain cell types, such as rat brain neurons, human placental trophoblast and rabbit and rat kidney cortex epithelium, respond to an outwardly directed K+ gradient as an additional source of energization. This simultaneous action may account for the high accumulation ratios seen with acidic amino acids. 5. Rabbit kidney has been found to have a glutamate-H+ co-transport system which is subject to stimulation by protons in the medium. 6. Acidic amino acid transport in rat brain neurons occurs with a stoichiometric coupling of 1 mol of amino acid to 2 mol of Na+. For rabbit intestine, one Na+ is predicted to migrate for each mol of amino acid. 7. Uptake in rat kidney cortex and in high-K+ dog erythrocytes is electrogenic. However, uptake in rabbit and newt kidney and in rat and rabbit intestine is electroneutral. 8. Na+-independent acidic amino acid transport systems have been described in the mouse lymphocyte, the human fibroblast, the mouse Ehrlich cell and in rat hepatoma cells. 9. In a number of cell systems, D-acidic amino acids have substantial affinity for transport; D-glutamate, in a number of systems, however, appears to have little reactivity. 10. Acidic amino acid transport in some cell systems appears to occur via the "classical" routes (Christensen, Adv. Enzymol. Relat. Areas Mol. Biol. 49, 41-101, 1979). For example, uptake in the Ehrlich cell is partitioned between the Na+-dependent A system (which transports a wide spectrum of neutral amino acids), the Na+-dependent ASC system (which transports alanine, serine, threonine, homoserine, etc.), and the Na+-independent L system (which shows reactivity centering around neutral amino acids such as leucine and phenylalanine). Also, a minor component of uptake in mouse lymphocytes occurs by a route resembling the A system. 11. Human fibroblasts possess a Na+-independent adaptive transport system for cystine and glutamate that is enhanced in activity by cystine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Two- and four-cell mouse embryos exhibited both Na+-dependent and Na+-independent components of zwitterionic alpha-amino acid transport, which we tentatively ascribe to the A and L amino acid transport systems, respectively. Uptake of taurine was virtually all Na+-dependent and is probably via the beta system. Na+-independent L-lysine uptake by two-cell embryos may have been via system y+. The small amount of lysine transport which was Na+-dependent (30% of the total) could not be attributed to any well known transport system and may have been due to the early ontogenetic expression of a newly described transport system which predominates in preimplantation blastocysts. We conclude that the rate of Na+-dependent amino acid transport in two-cell mouse embryos could be significantly affected in situ by changes in the [Na+] which are known to occur in oviductal fluid.  相似文献   

14.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ greater than Na+ greater than K+ greater than Rb+ greater than Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

15.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

16.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

17.
Negatively charged amino acids, such as aspartate and glutamate, were selected as substrates by low- and high-Km components of mediated Na(+)-dependent transport in preimplantation mouse blastocysts. These and other relatively small anionic amino acids with two carbon atoms between the negatively charged groups (or up to three carbon atoms when the groups were both carboxyl groups) interacted strongly with the low-Km component of transport, whereas larger anionic amino acids interacted weakly or not at all. The low-Km system was also stereoselective except in the case of aspartate. Moreover, transport was Cl(-)-dependent and slower at pH values outside the range 5.6-7.4. L-Aspartate, D-aspartate and L-glutamate each interacted strongly with the low-Km component of transport with Km values for transport nearly equal to their Ki values for inhibition of transport of one of the other amino acids. By these criteria, the low-Km component of transport of anionic amino acids in blastocysts appears to be the same as the familiar system X-AG that is present in other types of mammalian cells. In contrast, the high-Km component of transport in blastocysts preferred L-aspartate to L-glutamate, whereas the reverse is true for fibroblasts. Therefore, transport of anionic amino acids in blastocysts may occur via at least one process that has not been described in other types of cells. Roughly half of mediated glutamate and aspartate transport in blastocysts may occur via the high-Km component of transport at the concentrations of these amino acids that may be present in uterine secretions.  相似文献   

18.
The results of histochemical and immunocytochemical studies have been used elsewhere to support the hypothesis that Na+/K(+)-ATPase expression is initiated or increases dramatically in preimplantation mouse conceptuses just before they begin to cavitate. Moreover, localization of the enzyme in the inner membrane of the mural trophoblast is thought to be involved directly in formation and maintenance of the blastocyst cavity. Presumably, Na+/K(+)-ATPase extrudes the cation, Na+, and therefore water into the cavity. The cation transporting activity of the enzyme can be determined by measuring ouabain-sensitive Rb+ uptake by cells. Therefore, we measured Rb+ uptake in mouse eggs and preimplantation conceptuses at various stages of development. 86Rb+ uptake by conceptuses increased linearly with time for at least 60 min in medium containing 0.7 mM total Rb+ plus K+ in the absence or presence of 1.0 mM ouabain, and ouabain inhibited more than 70% of 86Rb+ uptake. The ouabain concentration at 1/2 of maximum inhibition of the ouabain-sensitive component of 86Rb+ uptake was about 10-20 microM in eggs and conceptuses at all stages of preimplantation development. Moreover, ouabain-sensitive Rb+ uptake had a twofold higher Vmax value in blastocysts than in eggs or conceptuses at earlier stages of development (i.e., approximately 173 vs 70-100 fmole.conceptus-1.min-1), although the total cell surface area also was probably about two times greater in blastocysts than in eggs or other conceptuses. Ouabain-sensitive Rb+ transport in eggs and conceptuses may have occurred via a single ouabain-sensitive Rb+ transporter with a Hill coefficient of 1.5-1.8 (Hill plots). When it was assumed that the Hill coefficient had a value of 2.0, however, eggs and conceptuses appeared to contain at least two forms of Na+/K(+)-ATPase activity. These studies are the first to show that the cation transporting activity of Na+/K(+)-ATPase can be measured quantitatively in mammalian eggs and preimplantation conceptuses. Inclusion of this assay in experiments designed to determine how Na+/K(+)-ATPase activity is controlled in oocytes and conceptuses should yield further insight into the role of this enzyme in oogenesis and preimplantation development.  相似文献   

19.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

20.
Treatment of cultured rat hepatocytes with certain amino acids stimulates the activity of the System N transporter. The present report investigates the mechanism by which the stimulatory amino acids elicit their effect. Activation of System N-mediated transport by amino acids is rapid, cycloheximide-insensitive, and involves neither trans-stimulation nor recruitment of additional carriers to the plasma membrane. In addition, the activation is Na(+)-dependent, supporting the related observation that the most effective stimulatory amino acids are substrates of Na(+)-dependent transport Systems A, ASC, and N whereas substrates of Na(+)-independent System L and non-amino acid metabolites are ineffective. The data suggest that active accumulation of amino acids via Na(+)-dependent carriers is necessary for the activation to occur. The amino acid-dependent stimulation is blocked in a concentration-dependent manner by increasing extracellular K+. Treatment of hepatocytes with an amino acid such as asparagine causes cell swelling and stimulation of System N activity; both of these effects are reduced by hypertonic media. Furthermore, swelling of rat hepatocytes with hypotonic media mimics the System N-stimulatory effects of asparagine. Among the Na(+)-dependent amino acid transport systems present in rat hepatocytes, System N is stimulated preferentially by amino acid-containing or hypotonic media. Collectively, these results demonstrate that cell swelling is a prerequisite for the amino acid-dependent activation of the hepatic System N transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号