首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Koehler S  Ho TH 《Plant physiology》1988,87(1):95-103
Using in series ammonium sulfate precipitation, gel filtration, and DEAE anion exchange high performance liquid chromatography, we have purified to homogeneity a protease of Mr 37,000 secreted from barley (Hordeum vulgare L. cv Himalaya) embryoless half-seeds. This protease exists in three isozymic forms whose synthesis and secretion from barley aleurone layers was shown to be a gibberellic acid (GA3)-dependent process (R Hammerton, T-HD Ho 1986 Plant Physiol 80: 692-697). This protease constitutes a major portion of the protease activity secreted from half-seeds between 72 to 96 hours of incubation in the presence of GA3 as detected on activity gels containing hemoglobin as the substrate. Analysis of digestion products by urea/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that this protease is an endoprotease, therefore it is designated as barley endoprotease-A (EP-A). Inhibitor studies demonstrated that EP-A belongs to the cysteine class of endoproteases. The optimum pH for EP-A activity was 5.0, and the temperature optimum was 45°C. Comparison of cyanogen bromide generated peptide fragments and NH2-terminal sequence analyses of the three individual EP-A isozymes demonstrates that they are very similar to each other. The NH2-terminal sequence shows extensive sequence homology to the NH2-terminal sequence of papain and several other cysteine proteinases. We also provide evidence that EP-A is not `aleurain,' a putative cysteine proteinase encoded by a GA3-induced barley cDNA clone (JC Rogers, D Dean, GR Heck 1985 Proc Natl Acad Sci USA 82:6512-6516).  相似文献   

2.
Several species of cysteine proteinase inhibitors have been demonstrated in the greyhound intervertebral disk which were resolved four species (Mr 15 8000, 16 600, 17 200 and 17 800) by gelatin-SDS-polyacrylamide gel electrophoresis. Reductive alkylation did not affect their inhibitory capability not their electrophoretic migration on gelatin-SDS-polyacrylamide gel electrophoresis. The cysteine proteinase inhibitors from the nucleus pulposus and annulus fibrosus were identical as assessed by the aforementioned criteria, although the level in the nucleus was found to be higher than that in the annulus. Ion-exchange chromatography demonstrated distinct acidic and basic forms of the disc cysteine proteinase inhibitor. The latter species was the most abundant and its Mr was determined to be 16 900 by gelatin-SDS-polyacrylamide gel electrophoresis. Both forms were shown to be strongly inhibitory against the cysteine proteinases. papain and ficin, but were less strongly inhibitory against cathepsin B (EC 3.4.22.1). Presumably these disc cysteine proteinase finhibitors play a regulatory role in the metabolism of proteoglycans and collagen by endogenous cysteine proteinases.  相似文献   

3.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

4.
Barley aleurone layers synthesize and secrete several proteases in response to gibberellic acid (GA3). Two major cysteine proteinases designated EP-A (37,000 M(r)) and EP-B (30,000 M(r)) have been described [Koehler and Ho (1988). Plant Physiol. 87, 95-103]. We now report the cDNA cloning of EP-B and describe the post-translational processing and hormonal regulation of both cysteine proteinases. Three cDNAs for cysteine proteinases were cloned from GA3-induced barley aleurone layers. Genomic DNA gel blot analysis indicated that these are members of a small gene family with no more than four to five different genes. The proteins encoded by two of these clones, pHVEP1 and 4, are 98% similar to each other and are isozymes of EP-B. The proteins contain large preprosequences followed by the amino acid sequence described as the mature N terminus of purified EP-B, and are antigenic to EP-B antiserum. The results of pulse-chase experiments indicated that the post-translational processing of large prosequences proceeds in a multistep fashion to produce the mature enzymes. Processing intermediates for EP-B are observed both in the aleurone layers and surrounding incubation medium, but only mature EP-A is secreted. The regulation of synthesis of EP-A, EP-B, and other aleurone cysteine proteinases was compared at the protein and mRNA levels. We conclude that barley aleurone cysteine proteinases are differentially regulated with respect to their temporal and hormonally induced expression.  相似文献   

5.
The latent cysteine proteinase present in ascitic fluid of patients with neoplasia and released from ascites cells in culture has been partially purified and the enzyme after pepsin activation was shown to be immunologically related to the lysosomal proteinase, cathepsin B. The latent form was characterized as a single chain of Mr 40 000 as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions followed by Western blotting and immune staining with an antiserum to human cathepsin B. Using the same techniques the enzyme after pepsin activation gave a single band of Mr 33 000. Analysis by isoelectric focusing showed that the latent enzyme before and after pepsin treatment is composed of several acidic isoenzymes. These findings suggest that this latent proteinase represents a precursor form of cathepsin B which is released extracellularly rather than being processed and directed to the lysosome.  相似文献   

6.
The cysteine endoproteases (EP)-A and EP-B were purified from green barley (Hordeum vulgare L.) malt, and their identity was confirmed by N-terminal amino acid sequencing. EP-B cleavage sites in recombinant type-C hordein were determined by N-terminal amino acid sequencing of the cleavage products, and were used to design internally quenched, fluorogenic peptide substrates. Tetrapeptide substrates of the general formula 2-aminobenzoyl-P2-P1-P1′-P2′-tyrosine(NO2)-aspartic acid, in which cleavage occurs between P1 and P1′, showed that the cysteine EPs preferred phenylalanine, leucine, or valine at P2. Arginine was preferred to glutamine at P1, whereas proline at P2, P1, or P1′ greatly reduced substrate kinetic specificity. Enzyme cleavage of C hordein was mainly determined by the primary sequence at the cleavage site, because elongation of substrates, based on the C hordein sequence, did not make them more suitable substrates. Site-directed mutagenesis of C hordein, in which serine or proline replaced leucine, destroyed primary cleavage sites. EP-A and EP-B were both more active than papain, mostly because of their much lower Km values.  相似文献   

7.
Two kinds of cysteine proteinase inhibitor (Mr 145 000 and Mr 15 500) were purified from bovine serum. These purified inhibitors showed a single band on SDS-polyacrylamide gel electrophoresis, respectively. The isoelectric point of the high molecular weight inhibitor was found to be 4.4 and that of the low molecular weight inhibitor was 8.6. The high molecular weight inhibitor inhibited papain and cathepsin H, but had little activity against cathepsin B. While the low molecular weight inhibitor was a strong inhibitor of papain and cathepsin H and showed a weak inhibition of cathepsin B. These two inhibitors showed different immunological reactivities.  相似文献   

8.
A native high molecular complex (Mr 850000) containing about 50% of the allphycocyanin of the phycobilisome but lacking allophycocyanin B was separated from isolated phycobilisomes by gel electrophoresis. It was designated APCM since the large linker polypeptide LCM was exclusively localized in this complex. The complex exhibited a ?196°C fluorescence emission maximum at 673 nm (671 nm at 25°C). In addition, a core complex (designated APC, Mr≥1000000) consisting of both APCM and AP 680 was isolated by combined gel filtration and linear gradient centrifugation. At 25°C this complex showed dual emission peaks at 670 and 680 nm demonstrating functional independence of the terminal emitters. A complex similar to APCM can be isolated from phycobilisomes of Anabaena variabilis. This is evidence that APCM is the constitutive center of the tricylindrical core of hemidiscoidal cyanobacterial phycobilisomes. Two models summarizing the structural and functional consequences of the results are presented in the discussion.  相似文献   

9.
The dissociation of the extracellular hemoglobin of Tubifex tubifex at alkaline and acid pH, and its reassociation upon return to neutral pH, was investigated using gel filtration, ultracentrifugation, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE). Tubifex hemoglobin dissociated at pH above 8 and below 6; both dissociations appeared to be equilibrium processes. The extent of dissociation increased as the pH moved away from neutrality; although dissociation was virtually complete at pH 11, its extent at acid pH did not exceed 50–60% at pH 4. Ca(II), Mg(II), and Sr(II) cations over the range 1–100 mm decreased the extent of the dissociation only at alkaline pH. The visible absorption spectrum of the oxyhemoglobin remained unaltered in the pH range 4–9. At more extreme pH, it changed with time, altering irreversibly to that of the aquo ferri form. Gel filtration of the hemoglobin at both extremes of pH showed that it dissociated into two heme-containing fragments; one consisting of subunit 1 (Mr ~ 17,000) and the other containing subunits 2, 3, and 4 of the hemoglobin (Mr ~ 60,000). Upon return to neutral pH, the dissociated fragment reassociated to the extent of 50 to 80% to whole hemoglobin molecules. The reassociation decreased with increase in alkaline pH, and with decrease in acid pH to which the hemoglobin had been exposed; it increased in the presence of Ca(II), Sr(II), and Mg(II) only subsequent to dissociation at alkaline pH. The SDS-PAGE patterns, gel-filtration elution volumes, and α-helical contents, determined from circular dichroism at 222 nm, of the reassociated whole molecules were identical to those of the native hemoglobin.  相似文献   

10.
Two proteolytic enzymes, a cysteine proteinase and a carboxypeptidase, responsible for breakdown of the main storage protein, 13S globulin, were purified from buckwheat seedlings (Fagopyrum esculentum Moench) by (NH4)2SO4 fractionation, gel-filtration on Sephadex G-150, ionexchange chromatography on DEAE-Toyopearl 650 M and chromatofocusing. The cysteine proteinase was purified 74-fold. It has a pH optimum of 5.5, a pI of 4.5 and an apparent molecular mass (Mr) of 71000. The carboxypeptidase was purified 128-fold. It has a pH optimum of 5.3, a pI of 5.8 and a Mr of 78500. Cysteine proteinase hydrolyzed the modified 13S globulin only if the reaction products were eliminated from the incubation mixture by dialysis. Storage protein degradation by the proteinase increased in the presence of carboxypeptidase. We suggest that the two enzymes complete the digestion of 13S globulin after its preliminary hydrolysis by the earlier described enzyme, metalloproteinase, present in dry buckwheat seeds.Abbreviations BSA bovine serum albumin - DEAE diethylaminoethyl - Mr apparent molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

11.
Poulle M  Jones BL 《Plant physiology》1988,88(4):1454-1460
A proteinase was purified from germinated barley (green malt from Hordeum vulgare L. cv Morex) by acidic extraction, ammonium sulfate fractionation and successive chromatographies on CM-cellulose, hemoglobin sepharose, Sephadex G-75 and organomercurial agarose columns. The overall purification and final recovery were 290-fold and 7.5%, respectively. The purified enzyme was homogeneous on analytical gel electrophoresis, yielding a single protein associated with protease activity. An apparent molecular weight of about 20 kilodaltons was estimated for the native enzyme from gel filtration. SDS-gel electrophoresis revealed a single polypeptide of about 30 kilodaltons. The optimum pH for the hydrolysis of hemoglobin was around 3.8. The enzyme was strongly inhibited by leupeptin but was insensitive to phenylmethylsulfonyl fluoride, indicating that it was a cysteine proteinase. It hydrolyzed several large proteins from various origins. The ability of the enzyme to digest barley storage proteins in vitro was examined using SDS-gel electrophoresis. The hydrolysis patterns obtained showed that the enzyme rapidly hydrolyzed the large hordein polypeptides into relatively small fragments. The results of this study suggest that this 30 kilodalton enzyme is one of the predominant cysteine proteinases secreted into the starchy endosperm during barley germination and that it plays a major role in the mobilization of storage proteins.  相似文献   

12.
Intracellular proteolytic activities ofB. megaterium KM occur soluble in the cytoplasm and periplasm and insoluble in the membrane. Two proteolytic enzymes were found in the cytoplasmic fraction by gel filtration on Sephadex G 150 and by polyacrylamide gel electrophoresis. The first enzyme called CI was stable, had a relative molecular mass ofM r=105000 (M=105 kg/mol) and was inhibited by EDTA and PMSF, whereas the second, designated CII, was labile and had a relative molecular mass ofM r=46000 (M=46 kg/mol). Because of its lability it could not be characterized in detail. In the “periplasm” only a single proteolytic enzyme P (M r=28000;M=28 kg/mol) inhibited by EDTA could be demonstrated. The extracellular enzyme exhibited similar properties. The membrane proteolytic activity was sensitive to PMSF and EDTA. The membrane enzymes have not yet been solubilized. In cells of the mutant KM 12 that does not produce the extracellular proteinase, only one type of proteinase, in all its properties identical with the cytoplasmic proteinase CI, could be demonstrated.  相似文献   

13.
A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The M r of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-pNAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.  相似文献   

14.
Bai C  Vick BA  Yi SX 《Current microbiology》2002,44(4):280-285
A new bacterial isolate, 00-50-5, from sunflower head extracts was identified as Bacillus thuringiensis (Bt) according to its morphology. Bt isolate 00-50-5 was highly active against the banded sunflower moth (BSM), Cochylis hospes Walsingham. A sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 4–15% gradient gel of whole strain protein of 00-50-5 revealed six proteins with molecular masses (Mr) of 133, 80, 60, 27, 15, and 14 kDa. SDS-PAGE of pH 4.2-precipitated proteins (PP) or activated proteins formed by adding the BSM larval gut protease at 1:50 (wt/wt, protease/PP) showed five bands, including two major proteins of Mr 60 kDa and 27 kDa, and three small peptides of Mr 15, 13, and 7 kDa. The BSM larval gut protease was able to completely digest the proteins when present at a high ratio (10:1, wt/wt, protease/PP). The 60- and 27-kDa proteins could be digested by subtilisin Carlsberg at ratios of 1:50 or 1:1 (wt/wt, protease/PP), but neither BSM larval gut protease nor trypsin was effective at the same ratios. Three small peptides of Mr 15, 13, and 7 kDa were digested by the gut protease at a ratio of 1:1 (wt/wt). The N-terminal sequence of 1–31 amino acid residues for the 27-kDa protein showed 96.7% homology to a 31-amino acid fragment from camelysin, a protease from B. cereus, indicating that the 27-kDa protein may be a camelysin and a novel active protein against BSM. Received: 9 July 2001 / Accepted: 8 August 2001  相似文献   

15.
Ningyan Zhang  Berne I. Jones 《Planta》1996,199(4):565-572
Proteolytic enzymes hydrolyze cereal seed storage proteins into small peptides and amino acids, which are very important for seed germination and the malting process. A cysteine-class endopeptidase was purified from 4-d-germinated barley (Hordeum vulgare L. cv. Morex). Four purification steps were used, carboxymethyl cellulose cation-exchange chromatography, chromatofocusing, size-exclusion chromatography, and electroelution from a polyacrylamide gel. The endopeptidase was most active at pH 4.5. It's isoelectric point (pI) was 4.4, as determined by isoelectric focusing, and it's SDS-PAGE molecular size was 31 kDa. The enzyme specifically hydrolyzed peptide bonds when the S2 site contained relatively large hydrophobic amino acids. The N-terminal amino acid sequence residues (1–9) of the 31-kDa endopeptidase had high homology to those of the EP-A and EP-B cysteine proteinases reported previously. The 31-kDa endopeptidase had a hydrolytic specificity similar to that of the Morex green malt 30-kDa endopeptidase we characterized previously, and also reacted with the antibody raised against the purified 30-kDa proteinase, but the two had different mobilities on non-denaturing PAGE. The hydrolytic specificities of both 30- and 31-kDa endopeptidases are such that both would very quickly cleave hordein (barley storage) proteins to small glutamine- and proline-rich peptides that could be quickly degraded to amino acids by barley exopeptidases.Abbreviations CMC carboxymethyl cellulose - E-64 transepoxysuccinyl-l-leucylamido-(4-guanidino)butane - EMI N-ethylmaleimide - IEF isoelectricfocusing - Phen 1,10-phenanthroline - PI isoelectric point - PMSF phenylmethylsulfonyl fluoride We thank the American Malting Barley Association for partially funding this work. Germinated barley seeds were kindly prepared by Eddie D. Goplin. Special thanks to Laurie Marinac for her excellent technical assistance.  相似文献   

16.
The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin, TPCK and TLCK, and also by Hg2+, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.  相似文献   

17.
A fibrinogenolytic proteinase from the venom of Naja nigricollis was purified by chromatography on Bio-Rex 70 and Phenyl-Sepharose. The purified enzyme, designated proteinase F1, was homogeneous by the criterion of SDS-polyacrylamide gel electrophoresis, and consisted of a single chain with a molecular weight of 58 000. Purified proteinase F1 had approximately 15-fold more proteinase activity than the crude venom, based on its ability to inactive α2-macroglobulin. The enzyme acted on only the Aα-chain of fibrinogen and left the Bβ- and γ-chains intact. The pH optimum for this fibrinogenolytic activity was in the range of pH 8 to 10. In addition to its activity on fibrinogen, proteinase F1 was active on α2-macroglobulin and fibronectin, but did not degrade casein, hemoglobin or bovine serum albumin. The enzyme was not inhibited by inhibitors of serine proteinases, cysteine proteinases or acid proteinases, but only by the metalloproteinase inhibitor, EDTA. The inhibition by EDTA could be prevented by Zn2+, but not by Ca2+ or Mg2+.  相似文献   

18.
The glucocortiocoid receptors in the cytosol of neural retina of the 15-day chick embryo were analyzed by quantitative polyacrylamide gel electrophoresis. Maintenance of the triamcinolone acetonide (TA)-receptor complexes under conditions of electrophoretic analysis is dependent on temperatures not exceeding ?2 °C and is favored by low ionic strength, but is relatively insensitive to changes in pH between 5 and 10. Polyacrylamide gel electrophoresis in highly crosslinked Resolving Gels (15% crosslinking with N,N′-diallyltartardiamide) at low wattage and under temperature control at ?2 °C, allowed for detection and partial characterization of over 80% of the specific TA-binding activity of the tissue. One form of the glucocorticoid receptor, designated as complex II, was found to have a molecular weight (Mr) of 175,000. In addition, specifically bound TA was found in a multimillion Mr aggregate which was unable to enter gels of any concentration investigated and has been designated TA-complex I. The ratio of complex I/complex II increased with increasing gel concentration, indicating physical or chemical interaction between II and I. A polyacrylamide gel electrophoresis rerun of isolated TA-complex II gave rise to two smaller TA-binding species: Component B, of Mr 108,000 and component A, a relatively fast migrating molecule which could not be characterized under the conditions used. The ratio of BA appeared constant and close to 2, suggesting that A and B may be significant structural elements of complex II. Polyacrylamide gel electrophoresis of isolated TA-complex I gave rise to component C of Mr 60,000, but not to components A or B. Components A and B associated to a large Mr complex, designated as I′, which was revealed to an extent directly proportional to gel concentration. Similarly, component C aggregated to I″, as evidenced at elevated gel concentrations. In conclusion, it has been possible to define by gel electrophoresis three of the molecular species (A, B, and C) that comprise the glucocorticoid receptor, and the possible relationships between them.  相似文献   

19.
《Insect Biochemistry》1991,21(5):457-465
Musca domestica larval midgut display in cells and luminal contents a proteolytic activity with a pH optimum of 3.0–3.5. This activity is abolished by pepstatin and is insensitive to soybean trypsin inhibitor and to sulfhydryl proteinase inhibitors. The acid proteinase occurs in multiple forms with Mr values in the range 40,000–80,000 and with pI values of about 5.5. The proteinase inactivates at 60°C according to apparent first-order kinetics and Lineweaver-Burk plots of its activity against albumin concentration are rectilinear, suggesting that the multiple forms have similar properties. The proteinase reacts slowly with diazoacetylnorleucine plus CuSO4, is stable in alkaline media, is inhibited by dithiothreitol, hydrolyses hemoglobin better than albumin and is virtually not active upon synthetic substrates for pepsin. These properties are similar to those of cathepsin D. The specific activity of the acid proteinase determined by titration with pepstatin is 680 units/mg of proteinase and the KD of the pepstatin-proteinase complex is 1.5 nM at 30°C. The acid proteinase occurs mainly in midgut subcellular fractions characterized by a high specific activity of molybdate-inhibited acid phosphatase and a large number of secretory-like vesicles. It is proposed that the M. domestica midgut acid proteinase is a cathepsin D-like proteinase evolved to function in luminal contents. The lack of ATP activation of the midgut enzyme supports this hypothesis, since ATP is thought to regulate cathepsin D-proteolysis inside lysosomes.  相似文献   

20.
Triton X-100-extracted human skin fibroblasts were exposed to human immunodeficiency virus type 1 protease and analysed by 2D-gel electrophoresis and immunofluorescence microscopy. Vimentin, two of the tropomyosin isoforms, a protein with Mr ∼ 90,000 and a protein with Mr ∼ 200,000 were found to be degraded. Structurally, this was accompanied by the disintegration of the vimentin filament network and the disappearance of the microfilament network. In contrast to our in vivo observations (Höner et al., 1991), prominent stress fibers and chromatin structure seemed to be rather resistant to the action of this protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号