首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.  相似文献   

2.
The effects of direct and indirect electrical stimulation on intracellular potassium and sodium contents ([K]i and [Na]i, respectively) in rat soleus muscle (SOL) and extensor digitorum longus muscle (EDL) were investigated under in vivo conditions. The changes of [K]i and [Na]i contents in both muscles which were stimulated indirectly reached respective values at 30 min or 1 hr after the beginning of stimulation, whereas those of EDL stimulated with 60 Hz changed gradually through 2 hr stimulation. The shifts of [K]i and [Na]i in EDL occurred during the twitch contraction at considerably lower frequency stimulation (0.5–10 Hz), whereas those in SOL were observed during the tetanus contraction at high frequency stimulation (10–40 Hz). The difference of change in cationic shifts between EDL and SOL under low frequency stimulation was reduced by ouabain treatment, though the difference was still significant. When the muscles were indirectly stimulated 6000 times at 1,5,10 and 20 Hz, the cationic shifts in EDL were greater than those in SOL, extending over all frequencies. It was concluded that such a difference in ionic shift between contracting EDL and SOL may be primarily due to the difference in unidirectional ionic fluxes per stimulation and, secondly, to the difference in Na+-K+ pump activity.  相似文献   

3.
Isozymes of myosin in growing and regenerating rat muscles   总被引:4,自引:0,他引:4  
Native myosin isozymes of rat muscles have been isolated by electrophoreses in non-dissociating conditions. Their mobilities were measured, using taenia coli myosin as an internal standard and their relative concentrations were determined by computer planimetry of the electrophoretograms. Three isozymes were observed in extensor digitorum longus (EDL), two in soleus (SOL), four in neonatal muscles three days before birth. Regenerates of minced EDL or SOL muscles in adult animals had no native myosin the third day after surgery; they were similar to neonatal muscles 15 days after surgery and to adult muscles 60 days after surgery.  相似文献   

4.
Using a single, mechanically skinned fiber approach, we tested the hypothesis that denervation (0 to 50 days) of skeletal muscles that do not overlap in fiber type composition [extensor digitorum longus (EDL) and soleus (SOL) muscles of Long-Evans hooded rats] leads to development of different fiber phenotypes. Denervation (50 day) was accompanied by 1) a marked increase in the proportion of hybrid IIB/D fibers (EDL) and I/IIA fibers (SOL) from 30% to >75% in both muscles, and a corresponding decrease in the proportion of pure fibers expressing only one myosin heavy chain (MHC) isoform; 2) complex muscle- and fiber-type specific changes in sarcoplasmic reticulum Ca2+-loading level at physiological pCa 7.1, with EDL fibers displaying more consistent changes than SOL fibers; 3) decrease by 50% in specific force of all fiber types; 4) decrease in sensitivity to Ca2+, particularly for SOL fibers (by 40%); 5) decrease in the maximum steepness of the force-pCa curves, particularly for the hybrid I/IIA SOL fibers (by 35%); and 6) increased occurrence of biphasic behavior with respect to Sr2+ activation in SOL fibers, indicating the presence of both slow and fast troponin C isoforms. No fiber types common to the two muscles were detected at any time points (day 7, 21, and 50) after denervation. The results provide strong evidence that not only neural factors, but also the intrinsic properties of a muscle fiber, influence the structural and functional properties of a particular muscle cell and explain important functional changes induced by denervation at both whole muscle and single cell levels. mechanically skinned fibers; myosin heavy chain isoforms; lineage; sarcoplasmic reticulum; Ca2+; Sr2+ sensitivity; Long-Evans hooded rat  相似文献   

5.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

6.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

7.
The expression of genes responsible for the synthesis of essential proteins regulating the calcium-ion balance and ultrastructural characteristics of fast-twitch (m. extensor digitorum longus, EDL) and slow-twitch (m. soleus, SOL) skeletal muscles under prolonged exercise were studied in an experimental model of forced-swimming rats. A day after the end of the exercise, no significant changes in any of the five investigated genes were revealed in the SOL. A few triad elements (T-tubules and cisternae of sarcoplasmic reticulum) were revealed. A small number of excitation-contraction coupling (ECC) structures in the control and a slight increase in their amount after exercises were noticed. Polymorphism and mitochondrial defects within SOL muscles indicate the importance of these structures in the regulation of calcium balance. In EDL muscles, adaptation mechanisms are aimed mainly at pumping Ca2+ ions to the sarcoplasmic reticulum, where the main calcium buffer is calsequestrin. Expression of SERCA1 gene increased by an order of magnitude, and that of CASQ1 increased by three times. Electron microscopy showed a major role of triads in the maintenance of calcium homeostasis in the EDL muscles, as well as a greater destruction of these muscles compared to SOL after exhausting exercise. The high level of triads and a possible activation of the CICR (calcium-induced calcium release) mechanism in fast-twitch muscles can cause damage to them during exhausting exercise. Adaptation of SOL muscles is associated with structural rearrangements of the mitochondrial apparatus, while adaptation of the EDL muscles is caused by calcium removal from the sarcoplasm with Ca-ATPase and its retention in the sarcoplasmic reticulum by calsequestrin.  相似文献   

8.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

9.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding.These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.  相似文献   

10.
11.
An electron microscope study has been carried out on rat psoas muscle, during the early postnatal stages of development. Among the several subcellular components, the sarcotubular system undergoes the most striking modifications during this period. In muscle fibers of the newborn rat, junctional contacts between the T system and the SR are sparse and are, mostly, longitudinally or obliquely oriented. The T tubules do not penetrate deeply into the muscle cell, as indicated by the predominantly peripheral location of the triads and the persistence, at these stages of development, of a highly branched subsarcolemmal system of tubules. Diadic associations of junctional SR elements with the plasma membrane are also occasionally observed. The early SR elaborations incompletely delineate the myofibrils, at both the A- and I-band level. Longitudinal sections show irregularly oriented SR tubules, running continuously over successive sarcomeres. Flattened junctional cisterns filled with granular material are sparse and laterally interconnected, at circumscribed sites, with the SR tubules. Between 1 and 2 wk postpartum, transversal triadic contacts are extensively established, at the A-I band level, and the SR network differentiates into two portions in register with the A and I band, respectively. At 10–15 days after birth, the SR provides a transversely continuous double sheet around the myofibrils at the I-band level, whereas it forms a single discontinuous layer at the A-band level. The relationship that these morphological modifications of the sarcotubular system may bear to previously described biochemical and physiological changes of rat muscle fibers after birth is discussed.  相似文献   

12.
We studied the fiber types and contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles from young adult mice, rats and guinea pigs, and the correlation between these two parameters. Individual fibers in both muscles were classified as fast-twitch glycolytic (FG), fast-twitch oxidative glycolytic (FOG) or slow-twitch oxidative (SO) fibers according to Peter et al., and type II B, II A, or I fibers according to Brooke & Kaiser. Contractile properties were measured in situ at 37 degrees C. The isometric twitch contraction time (CT) and one-half relaxation time (1/2 RT) tended to be shortened in proportion to the area occupied by type II fibers, and type II B fibers. However, the differences between CT and fiber types were not always uniform among the three species. The CT of the rat EDL, in spite of its higher proportion of type II B fibers about 10% was the same as that of the guinea-pig EDL. The SOL of the mouse, composed of about 50% type I (SO) fibers, had a CT about as short as that of the EDL. In the case of the classification by Peter et al., the relationship between the percentage of subgroups of fast-twitch fibers and the CT or 1/2 RT, but not the resistance to fatigue, was not obvious. The resistance to fatigue tended to be enhanced in proportion to the area occupied by FOG in the EDL and by SO (type I) in the SOL. These results suggest that the contractile properties of individual fibers identified histochemically are distinct among animal species, producing interspecies differences in fiber types along with different contractile properties. However, it may be possible to compare the difference between fiber types and CT or 1/2 RT in the classification based on the pH lability of myosin ATPase, and also the difference between fiber types and resistance to fatigue in the classification based on the oxidative enzyme.  相似文献   

13.
Heat shock proteins (HSPs) are essential for normal cellular stress responses. Absolute amounts of HSP72, HSP25, and αB-crystallin in rat extensor digitorum longus (EDL) and soleus (SOL) muscle were ascertained by quantitative Western blotting to better understand their respective capabilities and limitations. HSP72 content of EDL and SOL muscle was only ~1.1 and 4.6 μmol/kg wet wt, respectively, and HSP25 content approximately twofold greater (~3.4 and ~8.9 μmol/kg, respectively). αB-crystallin content of EDL muscle was ~4.9 μmol/kg but in SOL muscle was ~30-fold higher (~140 μmol/kg). To examine fiber heterogeneity, HSP content was also assessed in individual fiber segments; every EDL type II fiber had less of each HSP than any SOL type I fiber, whereas the two SOL type II fibers examined were indistinguishable from the EDL type II fibers. Sarcolemma removal (fiber skinning) demonstrated that 10-20% of HSP25 and αB-crystallin was sarcolemma-associated in SOL fibers. HSP diffusibility was assessed from the extent and rate of diffusion out of skinned fiber segments. In unstressed SOL fibers, 70-90% of each HSP was readily diffusible, whereas ~95% remained tightly bound in fibers from SOL muscles heated to 45°C. Membrane disruption with Triton X-100 allowed dispersion of HSP72 and sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps but did not alter binding of HSP25 or αB-crystallin. The amount of HSP72 in unstressed EDL muscle is much less than the number of its putative binding sites, whereas SOL type I fibers contain large amounts of αB-crystallin, suggesting its importance in normal cellular function without upregulation.  相似文献   

14.
The purpose of this study was to investigate alterations in structural and functional properties in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats after 1, 2, and 5 wk of tail suspension. Maximal O2 uptake was 19% lower after 5 wk suspension. Loss of muscle mass was greater in SOL (63%) than in EDL (22%) muscle. A reduction of type I distribution was accompanied by an increase of intermediate fiber subgroups (int I in SOL, int II in EDL). The cross-sectional area of all three fiber types was reduced by hypokinesia. The decrease in capillaries per fiber in SOL was greater than the decrease in citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities after 5 wk. No alteration in lactate dehydrogenase activity was noted. In EDL, no changes in fiber area, capillarization, and enzymatic activities occurred. Energy charge remained unchanged (0.91) whatever the muscle. These results suggest that type I fibers showed an earlier and greater susceptibility than type II fibers to suspension which is also accompanied by a decreased aerobic capacity.  相似文献   

15.
Neonatalsciatic nerve crush results in a sustained reduction of the mass ofboth extensor digitorum longus (EDL) and soleus (SOL) musclesin the rat. Type IIB fibers are selectively lost from EDL. We haveinvestigated the effects of ciliary neurotrophic factor (CNTF) combinedwith neurotrophin (NT)-3 or NT-4 on muscle mass, as well as the number,cross-sectional area, and distribution of muscle fiber types and thenumber of motor neurons innervating EDL and SOL 3 mo after transientaxotomy 5 days after birth. Both NT treatments prevented theaxotomy-induced loss of muscle mass in both EDL and SOL and of totalnumber of muscle fibers in EDL but not in SOL. Although IIB fiber losswas not prevented, both NT treatments resulted in altered fiber typedistribution. Both NT combinations also reduced the loss of EDL motorneurons. These data suggest that a differential distribution of NTreceptors on either motor neurons or muscle fibers may lead todifferent levels of susceptibility to neonatal axotomy.

  相似文献   

16.
Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca2+ concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mRNA expression of components involved in Ca2+ regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca2+-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca2+-regulating proteins in a manner that does not follow typical fibre-type-specific transitions. In general, stimulation decreased mRNA content of all proteins studied. Most prominent down-regulation was observed for Cacna1 (26 and 32 % after SHO and PRO, respectively, in SOL; 19 % after SHO in EDL). SERCA1, SERCA2, CASQ1, CASQ2, and RyR1 mRNA content also decreased significantly in both muscles relative to resting control. Of notice is that hexokinase II mRNA content was increased in EDL and unchanged in SOL underlining the specificity of the down-regulation of mRNA of Ca2+ regulatory proteins. The results demonstrate contraction-induced down-regulation of mRNAs for the main components of Ca2+-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses.  相似文献   

17.
Single fibers isolated from walking leg muscles of crayfish have 8- to 10-µ sarcomeres which are divided into A, I, and Z bands. The H zone is poorly defined and no M band is distinguishable. Changes in the width of the I band, accompanied by change in the overlap between thick and thin myofilaments, occur when the length of the sarcomere is changed by stretching or by shortening the fiber. The thick myofilaments (ca. 200 A in diameter) are confined to the A band. The thin myofilaments (ca. 50 A in diameter) are difficult to resolve except in swollen fibers, when they clearly lie between the thick filaments and run to the Z disc. The sarcolemma invaginates at 50 to 200 sites in each sarcomere. The sarcolemmal invaginations (SI) form tubes about 0.2 µ in diameter which run radially into the fiber and have longitudinal side branches. Tubules about 150 A in diameter arise from the SI and from the sarcolemma. The invaginations and tubules are all derived from and are continuous with the plasma membrane, forming the transverse tubular system (TTS), which is analogous with the T system of vertebrate muscle. In the A band region each myofibril is enveloped by a fenestrated membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR extend over the A-I junctions of the myofibrils, where they make specialized contacts (diads) with the TTS. At the diads the opposing membranes of the TTS and SR are spaced 150 A apart, with a 35-A plate centrally located in the gap. It appears likely that the anion-permselective membrane of the TTS which was described previously is located at the diads, and that this property of the diadic structures therefore may function in excitation-contraction coupling.  相似文献   

18.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

19.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

20.
A countertransport ofH+ is coupled to Ca2+ transport across thesarcoplasmic reticulum (SR) membrane. We propose that SR carbonic anhydrase (CA) accelerates the CO2-HCO reaction so that H+ ions, which are exchanged forCa2+ ions, are produced or buffered in the SR at sufficientrates. Inhibition of this SR-CA is expected to reduce the rate ofH+ fluxes, which then will retard the kinetics ofCa2+ transport. Fura 2 signals and isometric force weresimultaneously recorded in fiber bundles of the soleus (SOL) andextensor digitorum longus (EDL) from rats in the absence and presenceof the lipophilic CA inhibitors L-645151, chlorzolamide (CLZ), andethoxzolamide (ETZ), as well as the hydrophilic inhibitor acetazolamide(ACTZ). Fura 2 and force signals were analyzed for time to peak (TTP), 50% decay time (t50), and their amplitudes.L-645151, CLZ, and ETZ significantly increased TTP of fura 2 by10-25 ms in SOL and by 5-7 ms in EDL and TTP of force by6-30 ms in both muscles. L-645151 and ETZ significantly prolongedt50 of fura 2 and force by 20-55 and40-160 ms, respectively, in SOL and EDL. L-645151, CLZ, and ETZalso increased peak force of single twitches and amplitudes of furafluorescence ratio (R340/380) at an excitation wavelengthof 340 to 380 nm. All effects of CA inhibitors on fura 2 and forcesignals could be reversed. ACTZ did not affect TTP, t50, and amplitudes of fura 2 signals or force.L-645151, CLZ, and ETZ had no effects on myosin-, Ca2+-,and Na+-K+-ATPase activities, nor did theyaffect the amplitude and half-width of action potentials. We concludethat inhibition of SR-CA by impairing H+ countertransportis responsible for deceleration of intracellular Ca2+transients and contraction times.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号