首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia volatilization from a flooded tropical soil   总被引:2,自引:0,他引:2  
Summary Ammonia volatilization, which follows upon the application of nitrogenous fertilizers to a flooded tropical soil, was directly measured in the greenhouse and in the field. Most of the ammonia volatilization losses occurred during the first 9 days after nitrogen application. Ammonia volatilization increased markedly with increases in soil pH. Nitrogen losses from ammonium sulfate applied to soils whose pH values were below 7.5 were very small. The losses from urea were much greater than those from ammonium sulfate. Mixing the fertilizer materials with the puddled soil reduced the losses. Ammonia losses from flooded soil were larger than from dry soil, and drying of a flooded soil reduced the duration and magnitude of ammonia volatilization. It is suggested that only a small amount of nitrogen is being lost through ammonia volatilization from many lowland rice soils. re]19750820  相似文献   

2.
Ammonia volatilization from applied nitrogen in alkali soils   总被引:1,自引:0,他引:1  
Incubation studies in a highly alkali soil showed ammonia volatilization losses from applied nitrogen to be largely governed by pH/alkalinity of the system. Submergence of the soil decreased the pH value resulting in lower losses. The anion of ammonium did not influence the losses. Ammonia volatilization obeyed first order kinetics. The losses were considerably reduced by deep placement of urea but were unchanged with variation in temperature from 20° to 40°C. Urea or ammonium sulphate lost similar amounts of nitrogen. Losses from green manure were very low. The results are discussed for their implication in nitrogen fertilizer efficiency and management in alkali soils.  相似文献   

3.
Model of ammonia volatilization from calcareous soils   总被引:2,自引:0,他引:2  
A quantitative model of ammonia volatilization from the calcareous soil uppermost 1-cm layer was developed and tested. The model accounts for the following processes: ammonium-ammonia equilibration in the soil solution, cation exchange between calcium and ammonium which results in ammonium distribution between soil liquid and solid phases, nitrification of dissolved ammonium, distribution of ammonia between liquid and gaseous phases and diffusion of gaseous ammonia in the soil air. The combined effect of various characteristics such as soil pH, cation exchange capacity, water capacity and nitrification rate on ammonia losses from various soil types have been studied. The model was validated against experimental results of ammonia losses from different soils for its use as a predicting tool. The model shows that most of ammonia losses can be explained by the interactive effect of high soil pH and low cation exchange capacity. Computations show increased ammonia volatilization with decreasing soil water capacity. Increasing fertilizer application rate has a small effect on percentage of ammonia losses. Increased nitrification rate and shorter “lag” period of nitrification reduce ammonia losses considerably. Good agreement was obtained between model calculations and experimental results of ammonia volatilization from 13 soils.  相似文献   

4.
Summary Inappropriate method and timing of N fertilizer application was found to result in 50–60% N losses. Recent nitrogen transformation studies indicate that NH3 volatilization in lowland rice soils is an important loss mechanism, causing a 5–47% loss of applied fertilizer under field conditions. Estimated denitrification losses were between 28 and 33%. Ammonia volatilization losses from lowland rice can be controlled by i) placement of fertilizer in the reduced layer and proper timing of application, ii) using phenylphosphorodiamidate (PPD) to delay urease activity in flooded soils, and iii) using algicides to help stabilize changes in floodwater pH. Appropriate fertilizer placement and timing is probably the most effective technique in controlling denitrification at the farm level. The effectivity of nitrification inhibitors as another method is still being evaluated. With 60–80% of N absorbed by the crop derived from the native N pool, substantial yield gains in lowland rice are highly possible with resources already in the land. Extensive studies on soil N and its management, and an understanding of soil N dynamics will greatly facilitate the decrease in immobilization and ammonium fixation in the soil and the increase in N availability to the rice crop. Critical research needs include greater emphasis on N transformation processes in rainfed lowland rice which is grown under more harsh and variable environmental regimes than irrigated lowland rice.  相似文献   

5.
Summary An incubation study on mineralization and gaseous losses of nitrogen was conducted on three soils with increasing levels (1.1 to 50 mmhos/cm) of salinity and two levels of urea and ammonium sulphate upto 6 weeks. Mineralization of nitrogen increased with time and decreased with the increase of salinity. It was more from ammonium sulphate than urea, and relatively more from the lower dose. The gaseous losses of NH4-N increased with salinity. About 35±5 per cent of added N was lost in the gaseous form at maximum (ECe=45 to 50 mmhos/cm) salinity and losses were more from light than heavier soils. Salinity and pH, both were correlated negatively with the N mineralisation and positively with the gaseous losses of ammonia in these salt-affected soils. re]19751105  相似文献   

6.
Nitrogenous fertilizer transformations in the sudan Gezira soil   总被引:1,自引:0,他引:1  
M. M. Musa 《Plant and Soil》1968,28(3):413-421
Summary and Conclusions Direct measurements were made of losses of ammonia during the transformation of urea and ammonium sulphate, surface-applied to alkaline Gezira soil in containers incubated in the field, under different rates of nitrogen application and moisture conditions.The highest rate of ammonia loss occurred during the first week after application with both fertilizers, thereafter decreasing to lower values. The cumulative ammonia loss was higher with higher application of nitrogen. Ammonium sulphate gave consistently higher ammonia losses than urea and losses from open soil system were generally less than from soil in polythene bags.With lowest irrigation level used, ammonia loss attained a sizeable value throughout the incubation period with both fertilizers. With the higher moisture levels, the magnitude of ammonia loss decreased appreciably, much more so with urea than with ammonium sulphate. Induced drying and rewetting prolonged the duration of loss and increased the magnitude of cumulative loss. An appreciable loss of ammonia may take place from fertillzed Gezira Soil under warm conditions, low moisture levels and high fertilizer concentration; this may be the case with patchy fertilizer distribution and frequent light showers during early summer. It is advisable to apply the urea or ammonium sulphate when conditions are most favourable for nitrification.  相似文献   

7.
The occurrence of facultative symbiotrophic N2-fixing associations in three rice soils of India is reported. Considerable variation in N2-fixing efficiency of these associations was noticed among the soil types studied. Associations from rice straw-amended alluvial soil under both flooded and non-flooded conditions exhibited higher N.-fixing efficiency than those from unamended soils of both water regimes. Despite high salinity and acidity an acid sulphate soil harboured N.-fixing symbiotrophic organisms with appreciable efficiency. Application of rice straw to the soil under both flooded and non-flooded conditions stimulated N2-fixation in alluvial, laterite and acid sulphate saline soils. These observations suggested the significant contribution of these associations to the nitrogen economy of different soil types.  相似文献   

8.
Ammonia volatilization is the major pathway for mineral nitrogen loss in the calcareous soils of the Chinese loess plateau, with maximum losses reaching 50% of the fertilizer-N applied. A volatilization-diffusion experiment was carried out in the laboratory using a forced-draft system and soil columns of 15.5 cm depth. Urea was surface applied at rates of 210 kg N ha-1 to a soil with 10% CaCO3 and a pH of 7.7. The amount of ammonia volatilized as well as the concentration profiles of ammoniacal-nitrogen and soil pH in the upper 50 mm of the soil columns after 4, 7 and 10 days were measured and subsequently modelled. The mechanistic model of Rachhpal-Singh and Nye, originally developed for neutral, non-calcareous soils, was modified to include the pH-buffering action of the soil carbonates. Model parameters were independently determined or taken from the literature. Measured and predicted cumulative NH3 losses agreed very well in the first 10 days following fertilizer application. However, in contrast to the simulations, NH3-volatilization was still proceeding in the experiment even after 13 days, with cumulative losses reaching 60% of the applied N. In addition to the high initial soil pH, the low bulk density and high volumetric air content of the soil columns used for the experiment proved decisive for the high rates of ammonia volatilization, provoking a strong increase in the amount of ammoniacal-N diffusing towards the soil surface as gaseous NH3. The simulations showed that due to the high soil pH, the buffering action of the soil carbonates played a comparatively smaller role.  相似文献   

9.
Intensive practices in forest soils result in dramatic nitrogen (N) losses, particularly ammonia (NH3) volatilization, to adjacent environmental areas. A soil column experiment was conducted to evaluate the effect of bamboo biochar on NH3 volatilization from tea garden and bamboo forest soils. The results showed that biochar amendment effectively reduced NH3 volatilization from tea garden and bamboo forest soil by 79.2% and 75.5%, respectively. The soil pH values increased by 0.53-0.61 units after biochar application. The NH4+-N and total N of both soils were 13.8-29.7% and 34.0-41.9% higher under the biochar treatments than under the control treatment, respectively. In addition, the soil water contents of the two biochar-amended soils were significantly higher (P < 0.05), by 10.7-12.5%, than that of the soils without biochar amendment. Therefore, biochar mitigates NH3 volatilization from the tested forest soils, which was due to the increases in soil NH4+-N, total N and water contents after biochar amendment. Our main findings suggest that biochar addition is an effective management option for sustainable forest management.  相似文献   

10.
K. R. Reddy 《Plant and Soil》1982,67(1-3):209-220
15N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH4 +?N kg dry soil?1 day?1), 2) net nitrification (2.07 mg NO3 ??N kg?1 dry soil?1 day?1), 3) denitrification (0.37 mg N kg dry soil?1 day?1), and 4) biological N2 fixation (0.16 mg N kg dry soil?1 day?1). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal.  相似文献   

11.
日光温室番茄-西瓜轮作系统不同水氮处理氨挥发特征   总被引:3,自引:0,他引:3  
为探究黄土高原地区日光温室果蔬栽培中氨挥发特征,在陕西省杨凌区选择当地典型的日光温室,设置4个不同的水氮处理,采用密闭式间歇抽气法监测番茄-西瓜轮作季的氨挥发特征.结果表明: 日光温室栽培土壤氮素转化快,施氮处理施肥后第1~2天氨挥发出现峰值,氨挥发峰值为0.26~2.02 kg N·hm-2·d-1,7 d左右各处理氨挥发通量相近;施氮处理间氨累积排放量无显著差异;相同施氮量条件下,降低灌溉量氨累积排放量两季平均增加了46.7%;不同种植季氨平均排放通量和累积排放量均表现为西瓜季高于番茄季,西瓜季高温促进了氨排放;土壤铵态氮含量、土壤孔隙含水量、0~5 cm地温和温室气温均对氨排放通量有极显著影响,而土壤pH值与氨挥发通量呈显著负相关关系.不同种植季氨挥发通量和累积排放量存在差异,降低施氮量可减少氨排放,相同施氮量条件下降低灌溉量增加了氨排放.  相似文献   

12.
在洞庭湖区农田施用秸秆生物炭不仅能实现秸秆资源化利用,还可降低环境污染压力。本研究于2020年采用水稻盆栽试验,研究了不同南荻秸秆生物炭施用量对土壤氨挥发速率、累积氨挥发量、表面水pH值和NH4+-N浓度的影响。供试土壤为第四纪红土发育的红黄泥和花岗岩发育的麻砂泥水稻土,设置6个南荻秸秆生物炭添加处理,即分别以土柱0~20 cm土壤重量的0%、1%、2%、4%、6%和8%比例添加生物炭,每盆施用复合肥200 kg N·hm-2。结果表明: 施用生物炭导致两种土壤之间或不同生物炭处理之间的氨挥发速率和累积量均存在显著差异。麻砂泥施用生物炭处理在施肥后第2天出现氨挥发峰值,且较不施生物炭处理峰值降低了23.6%~53.4%;红黄泥氨挥发峰值出现在施肥后第7~13天,且其峰值随着生物炭添加量的增加而升高。整体上,麻砂泥土壤的氨挥发速率均高于红黄泥。麻砂泥土壤<4%生物炭添加量能抑制土壤氨挥发速率及累积量,其中以2%处理降幅最大(46.9%),但生物炭添加对水稻生长前期表面水pH值的影响不显著;红黄泥土壤随着南荻生物炭用量的增加,表面水中pH值和NH4+-N浓度增加,导致氨挥发速率及累积量增幅达1.3~10.5倍。回归分析显示,生物炭添加量是影响两种土壤氨挥发的关键因素。Elo-vich方程能较好地拟合两种土壤的氨挥发累积量随时间的变化动态,各施炭处理的相关系数均达极显著水平。总体上,对于偏中性的麻砂泥土壤,施用一定量的南荻生物炭对氨排放有一定的抑制作用,而对于酸性的红黄泥土壤,增施南荻生物炭会通过提高表面水的pH值和NH4+-N浓度促进氨挥发,因此针对不同类型土壤施用南荻秸秆生物炭应注意选择适宜用量,以降低氮素损失。  相似文献   

13.
In the humid tropics, legumes are harvested and surface applied as mulch or incorporated as green manure. Studies on N dynamics and budgets from these systems report unaccounted losses of N. Ammonia volatilization may account for a significant percentage of these unexplained N deficits. The main objectives of this study were to: 1) determine the rate and amount of ammonia volatilization from organic amendments, both incorporated (green manure) and unincorporated (mulch), 2) compare ammonia volatilization of organic amendments on both acid (unlimed) and limed soils, and 3) correlate quality, i.e. polyphenolic and lignin concentration and carbon-to-nitrogen ratio, of the organic amendments with ammonia volatilization and net N mineralization. In an incubation experiment, ammonia volatilization losses and net N mineralization were measured from fresh leaflets of 10 legumes over a three-week period. Ammonia volatilization losses for the 10 species ranged from 3.4 to 11.8% of the total N applied in the organic amendment. Lignin content was negatively correlated to ammonia volatilization. Ammonia volatilized from mulches but not green manures, on both unlimed and limed soils, suggesting that ammonia volatilization is a surface phenomenon and not affected by soil pH. Net N mineralization was affected by species and soil pH, but was unaffected by placement (green manure or mulch). For the farmer in low-input agriculture where N tends to be limiting, volatilization losses of N from legume mulch systems could be on the same order of magnitude as crop removal.  相似文献   

14.
Ammonia losses during swine wastewater treatment were examined using single- and two-chambered microbial fuel cells (MFCs). Ammonia removal was 60% over 5 days for a single-chamber MFC with the cathode exposed to air (air-cathode), versus 69% over 13 days from the anode chamber in a two-chamber MFC with a ferricyanide catholyte. In both types of systems, ammonia losses were accelerated with electricity generation. For the air-cathode system, our results suggest that nitrogen losses during electricity generation were increased due to ammonia volatilization with conversion of ammonium ion to the more volatile ammonia species as a result of an elevated pH near the cathode (where protons are consumed). This loss mechanism was supported by abiotic tests (applied voltage of 1.1 V). In a two-chamber MFC, nitrogen losses were primarily due to ammonium ion diffusion through the membrane connecting the anode and cathode chambers. This loss was higher with electricity generation as the rate of ammonium transport was increased by charge transfer across the membrane. Ammonia was not found to be used as a substrate for electricity generation, as intermittent ammonia injections did not produce power. The ammonia-oxidizing bacterium Nitrosomonas europaea was found on the cathode electrode of the single-chamber system, supporting evidence of biological nitrification, but anaerobic ammonia-oxidizing bacteria were not detected by molecular analyses. It is concluded that ammonia losses from the anode chamber were driven primarily by physical-chemical factors that are increased with electricity generation, although some losses may occur through biological nitrification and denitrification.  相似文献   

15.
Laboratory experiments have shown appreciable losses of ammonia after injection of anhydrous ammonia into dry and wet soils. In this study losses of ammonia injected into a moist (tension 10 kPa), dry (tension 160 kPa) and a wet (tension 1.6 kPa) sandy loam were measured under field conditions using wind tunnels. Losses were insignificant from a moist soil. However losses from a dry and a wet soil were 20% and 50% of injected ammonia, respectively. From the dry soil, losses of gaseous ammonia took place within the first hours after injection, which indicates a rapid transport through cracks and voids. From the wet soil, 20% of the injected ammonia was lost more gradually between 6 h and 6 d. This indicates that upward movement of water due to evaporation may be the cause of these ammonia losses which proceeded for longer periods.  相似文献   

16.
Summary and conclusions 1. Studies of the transformation of urea and ammonium sulphate in the Sudan Gezeira soil, when incubated under field conditions in polythene bags, were carried out with two rates of nitrogen, different moisture levels and frequency of wetting and drying during the winter and summer months.2. The pattern of the transformation was nearly the same for the two levels of nitrogen added but there was a difference in magnitude. Urea hydrolysis was arrested during the first week in the open-bag system in the summer months. A low recovery of ammonia with ammonium sulphate and urea was associated with early ammonia volatilization losses.3. There was a marked accumulation of nitrite in the first two weeks especially in moist closed bags, thereafter it decreased to low values.4. Nitrate accumulated gradually under winter conditions, more so with closed bags than open ones. By contrast, little nitrate nitrogen was formed during the hot summer months, this being associated with high ammonia accumulation throughout the incubation period.  相似文献   

17.
The amounts of ammonia volatilized, following the application of cattle urine to 22 soils, were measured in the laboratory during an incubation period of 10 days. The urine contained 12.0 g N dm-3 and was applied to small columns of soil at a rate equivalent to 26.5 g N m-2. The soils were from fields of both grassland and arable cultivation and varied widely in properties. Ammonia volatilization ranged from 6.8 to 41.3% of the total urinary N, with a mean value of 26.4%. The soil property most closely related to the extent of volatilization was cation exchange capacity (CEC), and this was so whether all 22 soils were considered together or whether the 14 grassland and 8 arable soils were considered separately. In general, the higher the CEC the less the amount of ammonia volatilized. However, for a given value of CEC, volatilization tended to be greater from a grassland than from an arable soil. The pH of a soil/urine mixture measured after 24 hours was also quite closely correlated with the amount of ammonia volatilized, but the initial pH and titratable acidity of the soil were poorly correlated with ammonia volatilization. ei]H Marschner ei]H Lambers  相似文献   

18.
Urea-triazone nitrogen (N) is a stable solution resulting from a controlled reaction in aqueous medium of urea, formaldehyde, and ammonia which contains at least 25% total N. This N source contains no more than 40%, nor less than 5%, of total N from unreacted urea and not less that 40% from triazone. All other N shall be derived from water-soluble dissolved reaction products of the above reactants. It is a source of slowly available N. The rate of mineralization of urea-triazone is about 66% that of urea after 8 days when incorporated in a Munjor sandy loam. Ammonia volatilization losses of N applied as urea-triazone were about 41% of those from urea on a Cecil sandy loam in the first week after application. N leaching losses through saturated Yolo loam columns of urea-triazone were about two thirds that of urea or nitrate N. This N source has proven to be a safer and more effective material for direct application on plant foliage. Tomato growth was enhanced with foliar application of urea-triazone relative to that obtained from ammonium nitrate or urea. The stability of this N source from potential losses via ammonia volatilization and nitrate leaching when soil applied is also documented by results from university trials.  相似文献   

19.
Summary A pot experiment was carried out using a Bangladesh sandy loam paddy soil of pH 6.9 to compare the rates at which nitrogen from Azolla and ammonium sulphate was available to a high yielding rice variety, IR8, grown for 60 days in pots with 4 cm standing flood water.15N tracer studies confirm that nitrogen from ammonium sulphate was more available to the rice plants than from Azolla. An application of 6, 9 and 18 mg N of Azolla pot–1 (each pot contained 250 g soil) increased shoot dry matter yields by 13, 29 and 49% for an uptake of 19, 36 and 85% more nitrogen; the corresponding increases on using ammonium sulphate were 33, 54 and 114% for an increased uptake of 57, 90 and 177% more nitrogen, respectively. About 34% of applied15N of Azolla was taken up by the rice plants in 60 days but 61% of15N of the ammonium sulphate was absorbed during this period. About 45% of the Azolla-N was released in 60 days, 55% remained in the soils as undecomposed material and 11% was lost as gas. The gaseous loss of15N from ammonium sulphate was 14%; 25% remained in the soils.  相似文献   

20.
Nitrification inhibitors and ammonia volatilization   总被引:2,自引:0,他引:2  
Summary A nitrification inhibitor applied with ammonium sulphate to bare soil and to grass increased the persistence of ammonium-N in soil and decreased the amount of nitrate-N leached from bare soil. Ammonia was volatilized more rapidly from bare soils treated with ammonium sulphate plus the inhibitor than when ammonium sulphate alone was used; the inhibitor increased the amount of ammonia volatilized from grass covered soils eight times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号