共查询到20条相似文献,搜索用时 0 毫秒
1.
W. J. Middelhoven 《Antonie van Leeuwenhoek》1969,35(1):215-226
Enzyme repression in the arginine pathway ofSaccharomyces cerevisiae was demonstrated by comparison of specific enzyme activities in yeast grown with and without arginine in various mineral salts media. Of the enzymes tested only ornithine transcarbamoylase was found to be repressed by exogenous arginine. Acetylornithine-glutamate transacetylase and argininosuccinate lyase were not affected. No relationship between specific enzyme activities and intracellular arginine concentration was observed.During the adaptation of yeast grown in a medium supplemented with amino acids to a mineral salts medium, the enzymes ornithine transcarbamoylase and argininosuccinate lyase were not derepressed beyond their specific activities normally present in yeast grown in mineral salts media. Neither were the arginine-degrading enzymes arginase and ornithine transaminase broken down during this adaptation.Thanks are due to Professor E. G. Mulder and to Professor H. Veldkamp for stimulatory discussions; to the Heineken's Brouwerij, Rotterdam, and to the Landbouwhogeschoolfonds for research grants. 相似文献
2.
Glucose repression in the yeast Saccharomyces cerevisiae 总被引:50,自引:0,他引:50
R. J. Trumbly 《Molecular microbiology》1992,6(1):15-21
3.
Jacob Hofman-Bang 《Molecular biotechnology》1999,12(1):35-71
In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and
Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence
5′ GATAA 3′. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen
catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine,
GABA, and allantoine. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease
are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1,
Dal80, and Deh1 are some protease, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell.
In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as
other regulatory proteins. Overview of metabolic pathways and promotors are presented. 相似文献
4.
Regulation of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway of Saccharomyces cerevisiae 总被引:14,自引:0,他引:14
Two classes of regulatory mutations affecting the synthesis of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway have been selected in Saccharomyces cerevisiae. Together, they delineate a negative type of control. The cpaI0 mutations, closely linked with one of the two genes coding for the enzyme and cis dominant, meet properties of operator mutations. The cpaR mutations can be interpreted as mutations impairing the formation of an active repressor of carbamoylphosphate synthetase which is distinct from the one acting on the synthesis of the other enzymes of the arginine biosynthetic pathway. 相似文献
5.
Nitrogen catabolite repression in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1
J Hofman-Bang 《Molecular biotechnology》1999,12(1):35-73
In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5'GATAA 3'. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine. GABA, and allantonie. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some proteases, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell. In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented. 相似文献
6.
7.
We have identified carbon catabolite repression (CCR) as a regulator of amino acid permeases in Saccharomyces cerevisiae, elucidated the permeases regulated by CCR, and identified the mechanisms involved in amino acid permease regulation by CCR. Transport of l-arginine and l-leucine was increased by approximately 10-25-fold in yeast grown in carbon sources alternate to glucose, indicating regulation by CCR. In wild type yeast the uptake (pmol/10(6) cells/h), in glucose versus galactose medium, of l-[(14)C]arginine was (0.24 +/- 0.04 versus 6.11 +/- 0.42) and l-[(14)C]leucine was (0.30 +/- 0.02 versus 3.60 +/- 0.50). The increase in amino acid uptake was maintained when galactose was replaced with glycerol. Deletion of gap1Delta and agp1Delta from the wild type strain did not alter CCR induced increase in l-leucine uptake; however, deletion of further amino acid permeases reduced the increase in l-leucine uptake in the following manner: 36% (gnp1Delta), 62% (bap2Delta), 83% (Delta(bap2-tat1)). Direct immunofluorescence showed large increases in the expression of Gnp1 and Bap2 proteins when grown in galactose compared with glucose medium. By extending the functional genomic approach to include major nutritional transducers of CCR in yeast, we concluded that SNF/MIG, GCN, or PSK pathways were not involved in the regulation of amino acid permeases by CCR. Strikingly, the deletion of TOR1, which regulates cellular response to changes in nitrogen availability, from the wild type strain abolished the CCR-induced amino acid uptake. Our results provide novel insights into the regulation of yeast amino acid permeases and signaling mechanisms involved in this regulation. 相似文献
8.
9.
Specific induction of catabolism and its relation to repression of biosynthesis in arginine metabolism of Saccharomyces cerevisiae. 总被引:10,自引:0,他引:10
Experimental results are presented in support of the model previously proposed for specific induction of the synthesis of enzymes for arginine catabolism in Saccharomyces cerevisiae (Wiame, 1971a,b), and its connection with end-product repression of arginine biosynthetic enzymes. The data support the occurrence of negative regulation of metabolism in a eukaryote.Operator regions, one for arginase and another for ornithine transaminase, are identified. The operator mutations are fully constitutive. A mutation compatible with the occurrence of a catabolic represser, CARGR, leads to partial pleiotropic constitutivity.The connection between the induction process and the repression of biosynthetic enzymes is due to a common receptor of metabolic signals, an ambivalent repressor ARGR endowed with the property of a usual repressor for anabolic enzymes and playing the role of inducer at the level of CARGR; this cascade process simulates a positive control. argR? mutations, by producing defective ARGR, “turn on” anabolic enzyme synthesis and “turn off” the synthesis of catabolic enzymes (Fig. 2). The dual role of ARGR is confirmed by the isolation of a mutation argRIId which, in contrast to the defective properties caused by usual argR? mutations, causes a dominant hyperactivity toward induction of a catabolic enzyme, but retains recessive hypoactivity toward repression of an anabolic enzyme. Such an ambivalent repressor is a function necessary for mutual, balanced exclusion between opposite metabolisms.Many operator constitutive mutations for arginase, cargA+O?, change the level of enzyme to a similar value, thus defining a genetic function. One of these mutations, cargA+Oh, in addition to having unusual genetic behaviour, leads to production of twice as much arginase as cargA+O?. This suggests the existence of another genetic region near the structural gene for this enzyme and an additional regulatory function to be analyzed in a separate paper (Dubois &; Wiame, 1978). 相似文献
10.
Nitrogen catabolite repression of asparaginase II in Saccharomyces cerevisiae 总被引:2,自引:7,他引:2 下载免费PDF全文
A new procedure was devised for selecting, from lac+ galE strains of Escherichia coli, mutants resistant to galactoside-induced lysis. When applied to trp-lac fusions, our method yields down mutations in the trp promoter. 相似文献
11.
The Saccharomyces cerevisiae cell wall provides a semipermeable barrier that can retain intracellular proteins but still permits small molecules to pass through. When S. cerevisiae cells expressing E. coli lacZ are treated with detergent to extract the cell membrane, beta-galactosidase activity in the permeabilized cells is approximately 40% of the activity of the protein in cell extract. However, the permeabilized cells can easily be collected and reused over 15 times without appreciable loss in activity. Cell wall composition and thickness can be modified using different cell strains for enzyme expression or by mutating genes involved in cell wall biosynthesis or degradation. The Sigma1278b strain cell wall is less permeable than the walls of BY4742 and W303 cells, and deleting EXG1, which encodes a 1,3-beta-glucanase, can further reduce permeability. A short Zymolyase treatment can increase cell wall permeability without rupturing the cells. Encapsulating multiple enzymes in permeabilized cells can offer kinetic advantages over the same enzymes in solution. Regeneration of ATP from AMP by adenylate kinase and pyruvate kinase encapsulated in the same cell proceeded more rapidly than regeneration using a cell extract. Combining permeabilized cells containing adenylate kinase with permeabilized cells containing pyruvate kinase can also regenerate ATP from AMP, but the kinetics of this reaction are slower than regeneration using cell extract or permeabilized cells expressing both enzymes. 相似文献
12.
Martin O Brandriss MC Schneider G Bakalinsky AT 《Applied and environmental microbiology》2003,69(3):1623-1628
Anaerobic arginine catabolism in Saccharomyces cerevisiae was genetically modified to allow assimilation of all four rather than just three of the nitrogen atoms in arginine. This was accomplished by bypassing normal formation of proline, an unusable nitrogen source in the absence of oxygen, and causing formation of glutamate instead. A pro3 ure2 strain expressing a PGK1 promoter-driven PUT2 allele encoding Delta(1)-pyrroline-5-carboxylate dehydrogenase lacking a mitochondrial targeting sequence produced significant cytoplasmic activity, accumulated twice as much intracellular glutamate, and produced twice as much cell mass as the parent when grown anaerobically on limiting arginine as sole nitrogen source. 相似文献
13.
14.
Toivari MH Salusjärvi L Ruohonen L Penttilä M 《Applied and environmental microbiology》2004,70(6):3681-3686
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source. 相似文献
15.
16.
The reversibility of arginine accumulation was followed in exponentially growing cells of Saccharomyces cerevisiae and in the same cells transferred to non-growing energized conditions. Under non-growing conditions the accumulated arginine is retained in the cells while in exponentially growing cells the accumulated radioactivity is released after the addition of high external concentrations of arginine. There are indications that the process is saturable. The accumulated arginine is not exchanged for other related amino acids (l-citrulline, l-histidine). Only l-lysine (a low-affinity substrate of the specific arginine permease) provokes partial radioactivity efflux from the cells. The switch of the arginine-related radioactive label efflux to its complete retention in the cells after changing the growth conditions occurs within a few minutes and is tentatively attributed to two concomitantly occurring events: (1) the actual presence of radioactive arginine (not its metabolite(s)) in the cell and (2) a modification of the specific arginine permease. The specific exchange of arginine described in the present study contrasts with the currently widely accepted opinion of unidirectionality of amino acid fluxes in yeast. The reasons why this phenomenon has not been observed before are discussed. 相似文献
17.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to nitrogen catabolite repression. In the present study we examined the physiological effects of glutamate auxotrophy on cellular metabolism and on the nitrogen catabolite repression of asparaginase II. Glutamate auxotrophic cells, incubated without a glutamate supplement, had a diminished internal pool of alpha-ketoglutarate and a concomitant inability to equilibrate ammonium ion with alpha-amino nitrogen. In the glutamate auxotroph, asparaginase II biosynthesis exhibited a decreased sensitivity to nitrogen catabolite repression by ammonium ion but normal sensitivity to nitrogen catabolite repression by all amino acids tested. 相似文献
18.
Coordinate repression of arginine aminopeptidase and three enzymes of the arginine deiminase pathway in Streptococcus mitis 总被引:2,自引:0,他引:2
Streptococcus mitis contains two arginine aminopeptidases (I and II) as an arginine-supplying system and the arginine deiminase pathway as an arginine-utilizing system. The levels of arginine aminopeptidase I and three enzymes of the arginine deiminase pathway were suppressed by glucose in an apparently coordinate manner. Enzyme II appeared to be constitutive. 相似文献
19.