首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria ( Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test.  相似文献   

2.
Microcrystalline cellulose (MCC)/nano-SiO2 composite fibers were processed from solutions in 1-allyl-3-methylimidazolium chloride (AMIMCl) by the method of dry-jet wet spinning. The oscillatory shear measurements demonstrated that the gel network formed above 10 wt% nano-SiO2 and the complex viscosity increased with increasing nano-SiO2. Remarkably, the shear viscosity of the nanofluids was even lower than solutions without nano-SiO2 under high shear rates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that well-dispersed particles exhibit strong interfacial interactions with cellulose matrix. Measurements on wide-angle X-ray diffraction (WAXD) indicated that the regenerated cellulose and nanocomposite fibers were the typical cellulose II crystalline form, which was different from the native cellulose with the polymorph of Type I. The tensile strength of the nanocomposite fibers was larger than that of pure cellulose fiber and showed a tendency to increase and then decrease with increasing nano-SiO2. Furthermore, the nanocomposite fibers exhibited improved thermal stability.  相似文献   

3.
The recently developed technique of reductive amination, followed by gold labeling, was applied to visualize the reducing ends of cellulose microcrystals from cellulose I, cellulose II, and cellulose III(I). In these crystals, which were also characterized by electron diffraction, the labeling proved that the chains were organized in a parallel fashion in cellulose I from ramie and Valonia and also in cellulose III(I) from Valonia. In microcrystals of cellulose II from mercerized ramie, the labeling method showed that the chains were packed into an antiparallel mode. These results are discussed in terms of the fine structure of cellulose I where neighboring microfibrils of opposite polarity are visualized. The mercerization process whereby cellulose I is converted into cellulose II is therefore best described in terms of an intermingling of the cellulose chains from neighboring microfibrils of opposite polarity. As opposed to the case of mercerization the conversion of cellulose I into cellulose III(I) does not require the participation of neighboring microfibrils since the crystalline domains are converted individually.  相似文献   

4.
Summary Cotton fibers are often utilized as a model system to investigate cellulose biosynthesis and cell wall elongation. In this study, we grew cotton fibers in vitro, with ovules dissected at day zero post anthesis as the expiant source, in the presence of three herbicides that inhibit cellulose biosynthesis. Cultures were sampled for electron microscopy and immunocytochemistry 1–2 days after beginning the treatments. After dichlobenil treatment, the fibers were much shorter than the controls and assumed a variety of abnormal shapes, from shortened versions of the control fiber to nearly spherical. The inner layers of the fiber wall often contained juxtaposed electron-translucent and -transparent areas; this layer reacted strongly with antibodies to callose. Cellulase-gold labeling in these newly developed fibers grown in the presence of dichlobenil was present at only about 3% of the control labeling. After treatment with either isoxaben or flupoxam, the fibers assumed spherical shapes and frequently (more than 60% of fibers) exhibited a new cell plate within the fiber, indicating that cell division had occurred, a process that rarely occurred in the controls. Unlike the dichlobenil-treated fibers, fibers grown in the presence of isoxaben or flupoxam contained an extensive accumulation of chiefly deesterified pectins, replacing the entire wall with an elaborated version of the pectin sheath found in control cotton fibers. These data indicate that all three herbicides are effective disrupters of cellulose biosynthesis and cause radical changes in cell wall structure and composition. Moreover, these data indicate that the composition of the walls may influence indirectly cell cycle kinetics, keeping these fiber cells in a more meristematic mode.  相似文献   

5.
A new composite membrane was designed and studied for permselectivity of various molecular weight proteins. The membrane is composed of a porous substrate membrane [Durapore; poly(vinylidene fluoride)] coated with a thin dense layer of regenerated cellulose. This composite membrane was fabricated by spin coating a cellulose acetate solution onto the membrane, followed by alkaline hydrolysis of the cellulose acetate coating to regenerate cellulose. The coated layer was physically characterized by scanning electron microscopy (SEM) and infrared (IR) spectroscopy. In addition, the water uptake into and permeation properties of macromolecules across the coated and uncoated membranes were studied. A typical composite membrane coating was 0.8 +/- 0.2 mum thick, resulting in a molecular weight cutoff of approximately 40,000 daltons. This composite membrane also demonstrated negligible diffusional lag time for permeants, due to the diffusional barrier. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
In this study, the influence of the presence of low-methoxyl pectin (LM pectin) on the rheological and microstructural properties of microfibrillated cellulose suspensions was elucidated in order to create new structures with new and interesting textures. For that purpose, the rheological properties of the cellulose/LM pectin mixtures in variable proportions were compared with those of the individual biopolymers. The influence of the presence of calcium and/or sodium ions on the properties of the mixed systems was studied. The microstructure of the resulting system was studied by transmission electron microscopy and confocal laser scanning microscopy. It was found that, in the presence of LM pectin, a synergistic effect was observed when calcium ions were also present, leading to increased rheological properties of the composites. Indeed, addition of calcium to the mixtures induced LM pectin gelation, which was favoured in the presence of sodium, the pectin network contributing to the formation of a stronger cellulose/LM pectin composite gel. The presence of LM pectin alone in the microfibrillated cellulose suspensions does not significantly modify the viscoelastic and microstructural properties of microfibrillated cellulose suspensions. Whether calcium was added to the mixtures or not in water, the viscoelastic properties of the mixtures are mainly controlled by cellulose. The same behaviour was observed for the mixtures in NaCl without added calcium. Contrary to this observation, it was noticed that in presence of both sodium and calcium ions, the viscoelastic properties of the mixtures are largely governed by LM pectin. On the other hand, it was showed that the flow behaviour of microfibrillated cellulose suspensions is modified in the presence of LM pectin with an increase in thixotropic character shear-thinning behaviour, which was more pronounced in the presence of NaCl. It was also shown, from TEM observations, that an interpenetrating network formed in cellulose/LM pectin composites gel in the presence of calcium ions. In the same way, the CLSM observations allowed the separate localization of cellulose and LM pectin within the composite systems to be highlighted. The results obtained suggests that it is possible to thus create new structures with new interesting textures, by mixing microfibrillated cellulose suspensions and LM pectin in suitable proportions in the simultaneous presence of both sodium and calcium ions.  相似文献   

7.
A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together.Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together.The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion.  相似文献   

8.
Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.  相似文献   

9.
Chitosan cross-linked cellulose fibers were prepared using non-toxic procedures in order to confer antimicrobial properties to cellulose fibers. Citric acid was used as the cross-linker and NaH2PO4 as catalyst in previously UV-irradiated cellulose fibers. Further heat dried-cure process and washing with detergent, water and acetic acid (0.1 M) gave a maximum incorporation of chitosan of 27 mg per gram of functionalized textile. The thermogravimetric analysis of the material with the highest chitosan content showed an increased thermal stability compared to cellulose and chitosan. The UV-irradiation induced morphological changes, such as less entangled cellulose fibers, as observed by scanning electron microscopy, which was prompted to enhance the chitosan incorporation. The biomass and spore germination percentage of Penicillium chrysogenum and colony forming units per millilitre for Escherichia coli decreased significantly on the composed materials as compared to raw cellulose fiber and it was similar to that obtained with a commercial antimicrobial cellulose fiber.  相似文献   

10.
The initial testing of the safety of a cellulose-heparinase hollow fiber device was assessed with respect to physical properties and in vitro biocompatibility. The material cleared urea and creatinine without passing albumin, even at high flow rates. The clearance of urea and creatinine by cellulose-heparinase was equal or slightly reduced in comparision to the cellulose device. The cellulose-neparinase device tolerance to now rates was also unchanged. In addition, scanning electron microscopy of the lumen established the uniformity of the material. The analysis of clearance rates and the scanning electron micrographs show there to be no damage to the cellulose membrane after tresyl chloride activation and heparinase immobilization. The investigation of biocompatibility in an in vitro test system with whole human blood indicated that there were no significant changes in the biocompatibility of cellulose with bound heparinase. There was no change in the level of red blood cells, white blood cells, or platelets over the course of in vitro whole blood perfusion through cellulose or cellulose-heparinase hollow fiber devices. Low levels of plasma hemoglobin and complement activation were observed with cellulose and cellulose-heparinase devices. Thus, the cellulose hollow fibers can be functionalized without any changes in in vitro performance.  相似文献   

11.
The effect of concentration on anisotropic phase behavior of acid-hydrolyzed cellulose suspensions has been examined using conventional polarizing microscopy and the novel technique of environmental scanning electron microscopy (ESEM). Microcrystalline cellulose dispersed in water formed biphasic suspensions in a narrow concentration range, 4-12 wt % for a suspension pH of 4, where the upper and lower phases were isotropic and anisotropic (chiral nematic), respectively. It is known from previous work that within the biphasic regime total suspension concentration affects only the volume fractions of the two phases, not phase concentration or interfacial packing. As the total suspension concentration surpassed the upper critical limit (c), however, a single anisotropic phase of increasing concentration was observed. It was evident from polarizing microscopy that the chiral nematic pitch of the anisotropic phase decreased with increasing concentration, which has been attributed to a reduction in the electrostatic double layer thickness of the individual rods, thus increasing intermolecular interactions. Chiral nematic textures were also visible using ESEM. This technique has the advantage of studying individual rod orientation within the liquid crystalline phase as it permits the high resolution of electron microscopy to be applied to hydrated samples in their natural state. To our knowledge this is the first time such lyotropic systems have been observed using electron microscopy.  相似文献   

12.
The sorption of anionic polysaccharides pectin, alginate, and xanthan with cellulose were investigated in presence of calcium. Calcium sorption to cellulose was limited by the carboxyl group content in fibers. Atomic Absorption Spectroscopy (AAS) analysis was used to measure the calcium in cellulose fibers and chemical oxygen demand (COD) analysis reveals that the divalent ions calcium can bind the polysaccharide onto cellulose fibers. The amount of calcium and polysaccharide bound in Ca2+/polysaccharide modified cellulose fibers was 5.8-12.5 mM Ca2+/kg fibers and 1500-2400 mg polysaccharide/kg fibers, respectively. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) analysis confirmed the presence of polysaccharide on calcium containing cellulose fibers. The results of alizarin dyeing experiments at the end of polysaccharide sorption further confirmed the presence of calcium in Ca2+/polysaccharide modified cellulose fibers. The basic phenomenon of interaction of soluble ionic polysaccharide and cellulosic fibers in presence of divalent cations such as calcium is a key to understand biological functions and technological applications.  相似文献   

13.
Water-soluble sulfonated cellulose (SC) samples were synthesized by oxidizing hardwood kraft pulp with sodium periodate followed by the sulfonation reaction with sodium bisulfite. Six levels of oxidation/sulfonation were obtained by using different mmols (0.93-4.67) of periodate per gram of pulp. The aldehyde and sulfonic acid contents, surface morphology, and water solubility property of these treated fibers were characterized. It was found that carbonyl group content increased with the periodate charge and so did the sulfonic acid content in subsequent sulfonation step. Scanning electron microscopy images showed a significant change in surface morphology of the sulfonated samples. Solubility of sulfonated cellulose in water was determined from 1H NMR spectra and a solubility of 28.57 g/L was found when cellulose was oxidized with 4.67 mmol periodate per gram cellulose followed by the sulfonation reaction.  相似文献   

14.
A combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and hetero Diels-Alder (HDA) cycloaddition was used to effect, under mild (T ≈ 20 °C), fast, and modular conditions, the grafting of poly(isobornyl acrylate) (M(n) = 9800 g mol(-1), PDI = 1.19) onto a solid cellulose substrate. The active hydroxyl groups expressed on the cellulose fibers were converted to tosylate leaving groups, which were subsequently substituted by a highly reactive cyclopentadienyl functionality (Cp). By employing the reactive Cp-functionality as a diene, thiocarbonyl thio-capped poly(isobornyl acrylate) synthesized via RAFT polymerization (mediated by benzyl pyridine-2-yldithioformiate (BPDF)) was attached to the surface under ambient conditions by an HDA cycloaddition (reaction time: 15 h). The surface-modified cellulose samples were analyzed in-depth by X-ray photoelectron spectroscopy, scanning electron microscopy, elemental analysis, Fourier transform infrared (FT-IR) spectroscopy as well as Fourier transform infrared microscopy employing a focal plane array detector for imaging purposes. The analytical results provide strong evidence that the reaction of suitable dienophiles with Cp-functional cellulose proceeds under mild reaction conditions (T ≈ 20 °C) in an efficient fashion. In particular, the visualization of individual modified cellulose fibers via high-resolution FT-IR microscopy corroborates the homogeneous distribution of the polymer film on the cellulose fibers.  相似文献   

15.
Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon) and desorption (koff) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.  相似文献   

16.
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting "stuck" or otherwise slowing down may be responsible.  相似文献   

17.
Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.  相似文献   

18.
Inclusion of solid particles in bacterial cellulose   总被引:4,自引:0,他引:4  
Depending upon the strain and the method of cultivation, bacterial cellulose can be reticulated filaments, pellets, or a dense, tough gel called a pellicle. The pellicular form is commonly made by surface culture, but a rotating disk bioreactor is more efficient and reduces the time of a run to about 3.5 days instead of the usual 12-20 days. Particles added to the medium as the gel is forming are trapped to form a new class of composite materials. Particles enter the films that are forming on the disks at rates depending on the size and geometry of the particle, as well as the rotational speed and concentration of the suspension.  相似文献   

19.
Surface modification of natural fibers has been made using different methods. In this paper, cellulose fibers from sugarcane bagasse were bleached and modified by zirconium oxychloride in situ. The chemically modified cellulose fibers were compared to those of bleached ones. Cellulose fibers were modified with ZrO2·nH2O nanoparticles through the use of zirconium oxychloride in acidic medium in the presence of cellulose fibers using urea as the precipitating agent. The spatial distribution characterization of hydrous zirconium oxide on cellulose fibers was carried out by combining both processing and image analyses obtained by SEM and statistical methodologies. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG) were also used to characterize the nanocomposite. Results indicated that ZrO2·nH2O nanoparticles of about 30-80 nm diameter deposited on cellulose fibers were heterogeneously dispersed.  相似文献   

20.
To exploit the maximum potential of cellulose whiskers (CWs), we report here for the first time the successful fabrication of nanocomposites reinforced with highly oriented CWs in a polymer matrix. The nanocomposites were prepared using polyvinyl alcohol (PVA) and a colloidal suspension of cotton-derived CWs. The macroscopically homogeneous PVA-CW suspensions were extruded into cold methanol to form gel fibers followed by a hot drawing. Compared to the neat PVA fiber, the as-spun fiber containing a small amount of CWs (5 wt % of solid PVA) showed higher drawability, leading to an extremely high orientation of CWs with the matrix PVA. The stress-transfer mechanism, a prime determining factor for high mechanical properties of nanocomposites, was studied by X-ray diffraction. The stress on the incorporated CWs was monitored by applying an in situ nondestructive load to the composite fibers. The applied stress to the whole sample was found to be effectively transferred to the CWs inside the composites, suggesting strong interfacial bonding between the filler and the matrix. Effective stress transfer to the oriented whiskers resulted in outstanding enhancement in mechanical properties of the nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号