首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The visual ambiguity of a moving plane   总被引:1,自引:0,他引:1  
It is shown that the optic flow field arising from motion relative to a visually textured plane may be characterized by eight parameters that depend on the observer's linear and angular velocity and the coordinate vector of the plane. These three vectors are not, however, uniquely determined by the values of the eight parameters. First, the optic flow field does not supply independent values for the observer's speed and distance from the plane; it only gives the ratio of these two quantities. But more unexpectedly, the equations relating the observer's linear velocity and the plane's coordinate vector to the eight parameters are still satisfied if the two vectors are interchanged or reversed in direction, or both. So in addition to the veridical interpretation of the optic flow field there exist three spurious interpretations to be considered and if possible excluded. This purpose is served by the condition that an interpretation can be seriously entertained only if it attributes every image element to a light source in the observer's field of view. This condition immediately eliminates one of the spurious interpretations, and exhibits the other two as mutually inconsistent: one of them is tenable only if all the visible sources lie on the forward half of the plane (relative to the observer's linear velocity); the other only if they all lie on the backward half-plane. If the sources are distributed over both halves of the plane, only the veridical interpretation survives. Its computation involves solving a 3 X 3 eigenvalue problem derived from the flow field. If the upper two eigenvalues coincide, the observer must be moving directly towards the plane; if the lower two eigenvalues coincide, his motion must be directly away from it; in both cases the spurious interpretation merges with the veridical one. If all three eigenvalues are equal, it may be inferred that either the observer's linear velocity vanishes or the plane is infinitely distant.  相似文献   

2.
3.
Natural visual scenes are rich in information, and any neural system analysing them must piece together the many messages from large arrays of diverse feature detectors. It is known how threshold detection of compound visual stimuli (sinusoidal gratings) is determined by their components' thresholds. We investigate whether similar combination rules apply to the perception of the complex and suprathreshold visual elements in naturalistic visual images. Observers gave magnitude estimations (ratings) of the perceived differences between pairs of images made from photographs of natural scenes. Images in some pairs differed along one stimulus dimension such as object colour, location, size or blur. But, for other image pairs, there were composite differences along two dimensions (e.g. both colour and object-location might change). We examined whether the ratings for such composite pairs could be predicted from the two ratings for the respective pairs in which only one stimulus dimension had changed. We found a pooling relationship similar to that proposed for simple stimuli: Minkowski summation with exponent 2.84 yielded the best predictive power (r=0.96), an exponent similar to that generally reported for compound grating detection. This suggests that theories based on detecting simple stimuli can encompass visual processing of complex, suprathreshold stimuli.  相似文献   

4.
de Jong MC  Knapen T  van Ee R 《PloS one》2012,7(1):e30595
Observers continually make unconscious inferences about the state of the world based on ambiguous sensory information. This process of perceptual decision-making may be optimized by learning from experience. We investigated the influence of previous perceptual experience on the interpretation of ambiguous visual information. Observers were pre-exposed to a perceptually stabilized sequence of an ambiguous structure-from-motion stimulus by means of intermittent presentation. At the subsequent re-appearance of the same ambiguous stimulus perception was initially biased toward the previously stabilized perceptual interpretation. However, prolonged viewing revealed a bias toward the alternative perceptual interpretation. The prevalence of the alternative percept during ongoing viewing was largely due to increased durations of this percept, as there was no reliable decrease in the durations of the pre-exposed percept. Moreover, the duration of the alternative percept was modulated by the specific characteristics of the pre-exposure, whereas the durations of the pre-exposed percept were not. The increase in duration of the alternative percept was larger when the pre-exposure had lasted longer and was larger after ambiguous pre-exposure than after unambiguous pre-exposure. Using a binocular rivalry stimulus we found analogous perceptual biases, while pre-exposure did not affect eye-bias. We conclude that previously perceived interpretations dominate at the onset of ambiguous sensory information, whereas alternative interpretations dominate prolonged viewing. Thus, at first instance ambiguous information seems to be judged using familiar percepts, while re-evaluation later on allows for alternative interpretations.  相似文献   

5.
Saalmann YB  Kastner S 《Neuron》2011,71(2):209-223
The thalamus is classically viewed as passively relaying information to the cortex. However, there is growing evidence that the thalamus actively regulates information transmission to the cortex and between cortical areas using a variety of mechanisms, including the modulation of response magnitude, firing mode, and synchrony of neurons according to behavioral demands. We discuss how the visual thalamus contributes to attention, awareness, and visually guided actions, to present a general role for the thalamus in perception and cognition.  相似文献   

6.
7.
With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.  相似文献   

8.
In Part I Caelli and Julesz generated texture pairs of 4-disk micropatterns with identical dipole statistics. They found that this iso-dipole constraint could not prevent the quasi-collinearity of certain disk elements which, in turn, yielded effortless discrimination. They proposed two classes of perceptual analyzers to explain discrimination with these micropatern textures: Class A, corresponding to those which detect dipole differences; while Class B detectors, such as the quasi-collinear detector (QCD), acted when isodipole textures were presented. In this paper we show several new methods for generating iso-dipole textures with micropatterns consisting of 5 or more disks or non-disk shaped elements, and we report the discovery of two other Class B detectors, a corner detector (using a 6-disk method), and a closure detector (with 8–11 disk micropatterns). These QCD, corner, and closure detectors were verified by examining several hundred iso-dipole texture pairs. It appears that iso-dipole constraints make ineffective all other feature analyzers involved in effortless texture discrimination than the Class B types. These figural properties of collinearity, corners, and closure can be perceived without scrutiny and are precursors of form perception.  相似文献   

9.
Gao Z  Li J  Yin J  Shen M 《PloS one》2010,5(12):e14273

Background

The processing mechanisms of visual working memory (VWM) have been extensively explored in the recent decade. However, how the perceptual information is extracted into VWM remains largely unclear. The current study investigated this issue by testing whether the perceptual information was extracted into VWM via an integrated-object manner so that all the irrelevant information would be extracted (object hypothesis), or via a feature-based manner so that only the target-relevant information would be extracted (feature hypothesis), or via an analogous processing manner as that in visual perception (analogy hypothesis).

Methodology/Principal Findings

High-discriminable information which is processed at the parallel stage of visual perception and fine-grained information which is processed via focal attention were selected as the representatives of perceptual information. The analogy hypothesis predicted that whereas high-discriminable information is extracted into VWM automatically, fine-grained information will be extracted only if it is task-relevant. By manipulating the information type of the irrelevant dimension in a change-detection task, we found that the performance was affected and the ERP component N270 was enhanced if a change between the probe and the memorized stimulus consisted of irrelevant high-discriminable information, but not if it consisted of irrelevant fine-grained information.

Conclusions/Significance

We conclude that dissociated extraction mechanisms exist in VWM for information resolved via dissociated processes in visual perception (at least for the information tested in the current study), supporting the analogy hypothesis.  相似文献   

10.
Our everyday conscious experience of the visual world is fundamentally shaped by the interaction of overt visual attention and object awareness. Although the principal impact of both components is undisputed, it is still unclear how they interact. Here we recorded eye-movements preceding and following conscious object recognition, collected during the free inspection of ambiguous and corresponding unambiguous stimuli. Using this paradigm, we demonstrate that fixations recorded prior to object awareness predict the later recognized object identity, and that subjects accumulate more evidence that is consistent with their later percept than for the alternative. The timing of reached awareness was verified by a reaction-time based correction method and also based on changes in pupil dilation. Control experiments, in which we manipulated the initial locus of visual attention, confirm a causal influence of overt attention on the subsequent result of object perception. The current study thus demonstrates that distinct patterns of overt attentional selection precede object awareness and thereby directly builds on recent electrophysiological findings suggesting two distinct neuronal mechanisms underlying the two phenomena. Our results emphasize the crucial importance of overt visual attention in the formation of our conscious experience of the visual world.  相似文献   

11.
Perception can change nonlinearly with stimulus contrast, and perceptual threshold may depend on the direction of contrast change. Such hysteresis effects in neurometric functions provide a signature of perceptual awareness. We recorded brain activity with functional neuroimaging in observers exposed to gradual contrast changes of initially hidden visual stimuli. Lateral occipital, frontal, and parietal regions all displayed both transient activations and hysteresis that correlated with change and maintenance of a percept, respectively. Medial temporal activity did not follow perception but increased during hysteresis and showed transient deactivations during perceptual transitions. These findings identify a set of brain regions sensitive to visual awareness and suggest that medial temporal structures may provide backward signals that account for neural and, thereby, perceptual hysteresis.  相似文献   

12.
We have found a class of feature detectors, based on the quasi-collinearity of dots, which result in visual texture discrimination even when second order statistics are equal. This degenerate counterexample to the Julesz conjecture on effortless texture discrimination has supplied the key to a simple theory of texture discrimination. Accordingly, effortless texture discrimination is based on two classses of perceptual detectors: Class A, those that measure differences in second-order (dipole) statistics; Class B, those that can still detect statistical differences in some features when second-order statistics are kept identical; for instance, the quasi-collinearity of adjacent dipoles. The difference thresholds (tuning curves) for the perceptual dipole and quasi-collinearity detectors have been determined. These texture pairs were generated by a method that creates micropatterns with iso-dipole duals from 4 disks. The extension of this 4-disk method to 5 and more disks with iso-dipole duals permits the search for other kinds of perceptual detectors and will be discussed in Part II.  相似文献   

13.
We introduce a neural network model of an early visual cortical area, in order to understand better results of psychophysical experiments concerning perceptual learning during odd element (pop-out) detection tasks (Ahissar and Hochstein, 1993, 1994a).The model describes a network, composed of orientation selective units, arranged in a hypercolumn structure, with receptive field properties modeled from real monkey neurons. Odd element detection is a final pattern of activity with one (or a few) salient units active. The learning algorithm used was the Associative reward-penalty (Ar-p) algorithm of reinforcement learning (Barto and Anandan, 1985), following physiological data indicating the role of supervision in cortical plasticity.Simulations show that network performance improves dramatically as the weights of inter-unit connections reach a balance between lateral iso-orientation inhibition, and facilitation from neighboring neurons with different preferred orientations. The network is able to learn even from chance performance, and in the presence of a large amount of noise in the response function. As additional tests of the model, we conducted experiments with human subjects in order to examine learning strategy and test model predictions.  相似文献   

14.
15.
Guo Z  Tay JC 《Bio Systems》2008,91(1):126-145
Multi-agent (or MA) -based design approaches have received much research attention lately for modeling immunological systems due to their efficacy in representing non-heterogeneous behaviors in the population under dynamic environmental and topological conditions. The update scheme of a MA model refers to the frequency of agent state updates and how these are related in temporal order. In contrast to verifiable agent behavioral rules at the individual level, the update scheme is a design decision made by the model developer at the systems level that is subject to realism and computational efficiency issues that directly affect the credibility and the usefulness of the simulation results. Previous works have mainly focused on the issue of realism with respect to synchrony of updates but have often overlooked the necessary heterogeneity in update frequencies due to multi-timescales in immunological phenomena. To incorporate such multi-timescales for realism, the efficiency of the update scheme arises as a nontrivial issue. An event-scheduling based asynchronous update scheme has the advantage of allowing arbitrary smaller timescales for realism and avoiding unnecessary execution and delays to achieve efficiency. In this paper we present the application of the event-scheduling update scheme to realistically model the B cell life cycle, and empirically compare its simulation performance with the widely adopted uniform time-step update scheme. The simulation results show a significantly reduced execution time (40 times faster) and also reveal the conditions where the event-scheduling update scheme is superior.  相似文献   

16.
17.
18.
We view the world with two eyes and yet are typically only aware of a single, coherent image. Arguably the simplest explanation for this is that the visual system unites the two monocular stimuli into a common stream that eventually leads to a single coherent sensation. However, this notion is inconsistent with the well-known phenomenon of rivalry; when physically different stimuli project to the same retinal location, the ensuing perception alternates between the two monocular views in space and time. Although fundamental for understanding the principles of binocular vision and visual awareness, the mechanisms under-lying binocular rivalry remain controversial. Specifically, there is uncertainty about what determines whether monocular images undergo fusion or rivalry. By taking advantage of the perceptual phenomenon of color contrast, we show that physically identical monocular stimuli tend to rival-not fuse-when they signify different objects at the same location in visual space. Conversely, when physically different monocular stimuli are likely to represent the same object at the same location in space, fusion is more likely to result. The data suggest that what competes for visual awareness in the two eyes is not the physical similarity between images but the similarity in their perceptual/empirical meaning.  相似文献   

19.
Liu T  Pestilli F  Carrasco M 《Neuron》2005,45(3):469-477
When a visual stimulus suddenly appears, it captures attention, producing a transient improvement of performance on basic visual tasks. We investigate the effect of transient attention on stimulus representations in early visual areas using rapid event-related fMRI. Participants discriminated the orientation of one of two gratings preceded or followed by a nonpredictive peripheral cue. Compared to control conditions, precueing the target location improved performance and produced a larger fMRI response in corresponding retinotopic areas. This enhancement progressively increased from striate to extrastriate areas. Control conditions indicated that the enhanced fMRI response was not due to sensory summation of cue and target signals. Thus, an uninformative precue increases both perceptual performance and the concomitant stimulus-evoked activity in early visual areas. These results provide evidence regarding the retinotopically specific neural correlate for the effects of transient attention on early vision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号