首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C‐28/I2 chondrocytes with N1,N11‐diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N1‐acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down‐regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase‐3 and ‐9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX). In other cellular models, enhanced polyamine catabolism or polyamine depletion has been implicated as mechanisms involved in DENSPM‐related apoptosis. However, the simultaneous addition of DENSPM and CHX rapidly increased caspase activity in C‐28/I2 cells in the absence of SSAT and SMO induction or significant reduction of polyamine levels. Moreover, caspase activation induced by DENSPM plus CHX was not prevented by a N1‐acetylpolyamine oxidase (PAO)/SMO inhibitor, and depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not reproduce DENSPM effects in the presence of CHX. DENSPM/CHX‐induced apoptosis was associated with changes in the amount or activation of signalling kinases, Akt and MAPKs, and increased uptake of DENSPM. In conclusion, the results suggest that DENSPM can favour apoptosis in chondrocytes independently of its effects on polyamine metabolism and levels. J. Cell. Physiol. 219: 109–116, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Chondrocyte apoptosis can be an important contributor to cartilage degeneration, thereby making it a potential therapeutic target in articular diseases. To search for new approaches to limit chondrocytic cell death, we investigated the requirement of polyamines for apoptosis favored by tumor necrosis factor-alpha (TNF), using specific polyamine biosynthesis inhibitors in human chondrocytes. The combined treatment of C-28/I2 chondrocytes with TNF and cycloheximide (CHX) resulted in a prompt effector caspase activation and internucleosomal DNA fragmentation. Pre-treatment of chondrocytes with alpha-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, markedly reduced putrescine and spermidine content as well as the caspase-3 activation and DNA fragmentation induced by TNF and CHX. DFMO treatment also inhibited the increase in effector caspase activity provoked by TNF plus MG132, a proteasome inhibitor. DFMO decreased caspase-8 activity and procaspase-8 content, an apical caspase essential for TNF-induced apoptosis. Although DFMO increased the amount of active, phosphorylated Akt, inhibitors of the Akt pathway failed to restore the TNF-induced increase in caspase activity blunted by DFMO. DFMO also reduced the increase in caspase activity induced by staurosporine, but in this case Akt inhibition prevented the DFMO effect. Pre-treatment with CGP 48664, an S-adenosylmethionine decarboxylase (SAMDC) inhibitor markedly reduced spermidine and spermine levels, and provoked effects similar to those caused by DFMO. Finally DFMO was effective even in primary osteoarthritis (OA) chondrocyte cultures. These results suggest that the intracellular depletion of polyamines in chondrocytes can inhibit both the death receptor pathway by reducing the level of procaspase-8, and the apoptotic mitochondrial pathway by activating Akt.  相似文献   

3.
Chondrocyte cell death can contribute to cartilage degeneration in articular diseases, such as osteoarthritis (OA). Sulforaphane (SFN), a natural compound derived from cruciferous aliment, is well known as an anti-carcinogen, but according to recent evidence it also shows cytoprotective effects on a variety of non-tumoral cells. Therefore we have tested the ability of SFN to protect chondrocytes from cell death in vitro. Treatment of growing monolayer cultures of human C-28/I2 chondrocytes with SFN in the low micro-molecular range for a few days, reduced cell growth without affecting cell survival or inducing apoptosis. However it decreased cell death in C-28/I2 chondrocytes exposed to stimuli previously reported to promptly trigger apoptosis, that is, the cytokine tumor necrosis factor-α (TNF) plus cycloheximide (CHX) or the polyamine analogue N(1),N(11)-diethylnorspermine (DENSPM) plus CHX. In particular pre-treatment with SFN reduced effector and initiator caspase activities and the associated activation of JNK kinases. SFN exerted a cytoprotective action even versus H(2)O(2) , which differently from the previous stimuli induced cell death without producing an evident caspase activation. SFN pre-treatment also prevented caspase activation in three-dimensional micromass cultures of OA chondrocytes stimulated with growth-related oncogene α (GROα), a pro-apoptotic chemokine. The suppression of caspase activation in micromasses appeared to be related to the inhibition of p38 MAPK phosphorylation. In conclusion, the present work shows that low micro-molecular SFN concentrations exert pro-survival and anti-apoptotic actions and influence signaling pathways in a variety of experimental conditions employing chondrocyte cell lines and OA chondrocytes treated with a range of death stimuli.  相似文献   

4.
5.
The activation of the NF-kappaB pathway by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFalpha), can be an important contributor for the re-programming of chondrocyte gene expression, thereby making it a therapeutic target in articular diseases. To search for new approaches to limit cartilage damage, we investigated the requirement of polyamines for NF-kappaB activation by TNFalpha in human C-28/I2 chondrocytes, using alpha-difluoromethylornithine (DFMO), a specific polyamine biosynthesis inhibitor. The NF-kappaB pathway was dissected by using pharmacological inhibitors or by expressing a transdominant IkappaBalpha super repressor. Treatment of C-28/I2 chondrocytes with TNFalpha resulted in a rapid enhancement of nuclear localization and DNA binding activity of the p65 NF-kappaB subunit. TNFalpha also increased the level and extracellular release of interleukin-8 (IL-8), a CXC chemokine that can have a role in arthritis, in an NF-kappaB-dependent manner. Pre-treatment of chondrocytes with DFMO, while causing polyamine depletion, significantly reduced NF-kappaB DNA binding activity. Moreover, DFMO also decreased IL-8 production without affecting cellular viability. Restoration of polyamine levels by the co-addition of putrescine circumvented the inhibitory effects of DFMO. Our results show that the intracellular depletion of polyamines inhibits the response of chondrocytes to TNFalpha by interfering with the DNA binding activity of NF-kappaB. This suggests that a pharmacological and/or genetic approach to deplete the polyamine pool in chondrocytes may represent a useful way to reduce NF-kappaB activation by inflammatory cytokines in arthritis without provoking chondrocyte apoptosis.  相似文献   

6.
7.
Lee SW  Song YS  Lee SY  Yoon YG  Lee SH  Park BS  Yun I  Choi H  Kim K  Chung WT  Yoo YH 《PloS one》2011,6(4):e19163
Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF)-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA) model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence versus a cause of the degeneration in vivo.  相似文献   

8.
Polyamine depletion induces apoptosis through mitochondria-mediated pathway   总被引:4,自引:0,他引:4  
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death.  相似文献   

9.
Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-A resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S(2) subsite, and do not bind in the caspase primary aspartic acid binding pocket (S(1)). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.  相似文献   

10.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   

11.
When Chinese hamster ovary cells were seeded in the presence of the spermine analog N1,N11-diethylnorspermine (DENSPM), cell proliferation ceased; this was clearly apparent by cell counting 2 days after seeding the cells. However, 1 day after seeding there was a slight difference in cell number between control and DENSPM-treated cultures. To investigate the reason for this easily surpassed slight difference, we used a sensitive bromodeoxyuridine/flow cytometry method. Cell cycle kinetics were studied during the first cell cycle after seeding cells in the absence or presence of DENSPM. Our results show that DENSPM treatment did not affect the progression of the cells through G1 or the first G1/S transition that took place after seeding the cells. The first cell cycle effect was a delay in S phase as shown by an increase in the DNA synthesis time. The following G2/M transition was not affected by DENSPM treatment. DENSPM treatment inhibited the transient increases in putrescine, spermidine, and spermine pools that took place within 24 h after seeding. Thus, in conclusion, the first cell cycle phase affected by the inhibition of polyamine biosynthesis caused by DENSPM was the S phase. Prolongation of the other cell cycle phases occurred at later time points, and the G1 phase was affected before the G2/M phase.  相似文献   

12.
Extracellular signal‐regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl‐2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK‐1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase‐deficient form of ERK‐1 (K71R) were more sensitive to TNF and CHX. In the ERK‐1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK‐1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK‐1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK‐1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase‐8 inhibitor IETD‐FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c‐Jun N‐terminal kinases activator, increased TNF‐killing. The ERK‐1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK‐1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. J. Cell. Biochem. 108: 1166–1174, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
Apoptosis plays a crucial role in maintenance of intestinal epithelial integrity and is highly regulated by numerous factors, including cellular polyamines. We recently showed that polyamines regulate nuclear factor (NF)-kappaB activity in normal intestinal epithelial (IEC-6) cells and that polyamine depletion activates NF-kappaB and promotes resistance to apoptosis. The current study went further to determine whether the inhibitors of apoptosis (IAP) family of proteins, c-IAP2 and XIAP, are downstream targets of activated NF-kappaB and play a role in antiapoptotic activity of polyamine depletion in IEC-6 cells. Depletion of cellular polyamines by alpha-difluoromethylornithine not only activated NF-kappaB activity but also increased expression of c-IAP2 and XIAP. Specific inhibition of NF-kappaB by the recombinant adenoviral vector containing IkappaBalpha superrepressor (AdIkappaBSR) prevented the induction of c-IAP2 and XIAP in polyamine-deficient cells. Decreased levels of c-IAP2 and XIAP proteins by inactivation of NF-kappaB through AdIkappaBSR infection or treatment with the specific inhibitor Smac also overcame the resistance of polyamine-depleted cells to apoptosis induced by the combination of tumor necrosis factor (TNF)-alpha and cycloheximide (CHX). Although polyamine depletion did not alter levels of procaspase-3 protein, it inhibited formation of the active caspase-3. Decreased levels of c-IAP2 and XIAP by Smac prevented the inhibitory effect of polyamine depletion on the cleavage of procaspase-3 to the active caspase-3. These results indicate that polyamine depletion increases expression of c-IAP2 and XIAP by activating NF-kappaB in intestinal epithelial cells. Increased c-IAP2 and XIAP after polyamine depletion induce the resistance to TNF-alpha/CHX-induced apoptosis, at least partially, through inhibition of the caspase-3 activity.  相似文献   

15.
Epiphyseal chondrocytes end their life cycle through apoptosis. While this event provides a mechanism for the removal of terminally differentiated cells from cartilage, agents that promote this physiological process have not been defined. To address this issue, using a cell culture technique that models events that take place in the growth plate, we asked the following questions: Can agents that promote chondrocyte maturation and cartilage mineralization serve as specific triggers for cell death? Are chondrocytes susceptible to apoptogens at a singular developmental stage? Treatment of embryonic tibial chondrocytes with inorganic phosphate (Pi) induced death in a dose- and time-dependent manner. Within 48 hr, 3 mM Pi increased chondrocyte death by 30%; lower concentrations of Pi induced death after 48 hr. To ascertain if death was due to apoptosis, we evaluated Pi-induced death by a number of different methods and compared the results to those induced by the apoptogen, staurosporine. Analysis of the death process indicated that cartilage cells shared many of the common biological features of the apoptotic process. Thus, there was DNA fragmentation, terminal deoxynucleotidyl transferase (TUNEL) labeling, an increase in cells in the sub-G1 fraction of the cell cycle, and morphological evidence of apoptosis. To explore the specificity of the Pi effect, the experiment was repeated using embryonic sternal cephalic and caudal chondrocytes, cells that are at an earlier developmental stage than the terminally differentiated tibial cells. We noted that these cells remained vital despite a major increase in the medium Pi content. Results of this study suggest that Pi is a stage-specific inducer of apoptosis in maturing chondrocytes and that this role may be linked to chondrocyte maturation and mineralization of the extracellular matrix.  相似文献   

16.
As the only cell in cartilage responsible for matrix synthesis, the chondrocyte's viability is crucial to healthy tissue. It must tolerate stresses from both mechanical and cellular sources. This study examines the endoplasmic reticulum (ER) stress response in chondrocytes after exposure to IL-1beta, nitric oxide, or tunicamycin in order to determine whether this form of stress causes cell death. Cultures of the immortalized human juvenile costal chondrocyte cell line, C-28/I2, were treated with IL-1beta, S-nitroso-N-acetylpenicillamine (SNAP), and tunicamycin. Increasing intracellular nitric oxide levels by SNAP treatment or inhibiting protein folding in the ER lumen by tunicamycin induced the ER stress response as evidenced by increased protein and gene expression of GADD153 as well as PERK and eIF2-alpha phosphorylation, and resulted in apoptosis. IL-1beta treatment induced PERK and eIF2-alpha phosphorylation, but not GADD153 expression or apoptosis. The ER stress signaling pathway of IL-1beta involved iNOS because blocking its expression, inhibited ER stress gene expression. Therefore, inducing the ER stress response in chondrocytes results in divergent responses depending on the agent used. Even though IL-1beta, a common proinflammatory cytokine, induces the ER stress response, it is not proapoptotic to chondrocytes. On the other hand, exposure to high levels of intracellular nitric oxide induce chondrocyte apoptosis as part of the ER stress response.  相似文献   

17.
18.
It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-alpha/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by alpha-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-alpha/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-alpha/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-alpha/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-alpha/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-alpha/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-alpha/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-alpha/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.  相似文献   

19.
The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.  相似文献   

20.
The polyamines are essential for cellular growth and differentiation. Ornithine decarboxylase (ODC), which catalyses the first step in the biosynthesis of the polyamines, has a very fast turnover and is subject to a strong feedback control by the polyamines. In the present study, we show that overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO for their growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication of apoptosis was the finding that one of the key enzymes in the apoptotic process, caspase-3, was induced when DFMO was omitted from the growth medium. Furthermore, inhibition of the caspase activity significantly reduced the recruitment of cells to the sub-G1 fraction. In conclusion, deregulation of polyamine homeostasis may negatively affect cell proliferation and eventually lead to cell death by apoptosis if putrescine levels become too high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号