首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser(51)Ala site-directed mutant of eIF2alpha, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2alpha by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single- and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2alpha Ser(51)Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2alpha protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2alpha phosphorylation in cells transfected with the mutant eIF2alpha construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser(51)Ala or wild-type eIF2alpha proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.  相似文献   

2.
Development of an efficient cell-free translation system from mammalian cells is an important goal. We examined whether supplementation of HeLa cell extracts with any translation initiation factor or translational regulator could enhance protein synthesis. eIF2 (eukaryotic translation initiation factor 2) and eIF2B augmented translation of capped, uncapped and encephalomyocarditis virus-internal ribosome entry site-promoted mRNAs. eIF4E specifically stimulated capped mRNA translation, while p97, a homologue to the C-terminal two-thirds of eIF4G, increased uncapped mRNA translation. When the HeLa cell extract was supplemented with a combination of eIF2, eIF2B, and p97, the capacity to synthesize a protein from an uncapped mRNA became comparable to that from the capped counterpart stimulated with a combination of eIF2, eIF2B, and eIF4E. A dialysis method rendered the HeLa cell extract capable of synthesizing proteins for 36h, and the yield was augmented when supplemented with initiation factors. In contrast, the productivity of a rabbit reticulocyte lysate was not enhanced by this method. Collectively, the translation factor-supplemented HeLa cell extract should become an important tool for the production of recombinant proteins.  相似文献   

3.
4.
In contrast to the vast majority of cellular proteins, rotavirus proteins are translated from capped but nonpolyadenylated mRNAs. The viral nonstructural protein NSP3 specifically binds the 3'-end consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G. Here we show that expression of NSP3 in mammalian cells allows the efficient translation of virus-like mRNA. A synergistic effect between the cap structure and the 3' end of rotavirus mRNA was observed in NSP3-expressing cells. The enhancement of viral mRNA translation by NSP3 was also observed in a rabbit reticulocyte lysate translation system supplemented with recombinant NSP3. The use of NSP3 mutants indicates that its RNA- and eIF4G-binding domains are both required to enhance the translation of viral mRNA. The results reported here show that NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.  相似文献   

5.
PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α’s N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α’s with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.  相似文献   

6.
Since a large number of eukaryotic proteins are glycoproteins, an efficient and easily available cell-free system for the production of recombinant glycoproteins is needed. We have successfully developed an efficient cell-free translation system derived from a monoclonal antibody-producing hybridoma for this purpose. While extracts from HeLa cells were very inefficient for production of an N-glycosylated form of human immunodeficiency virus type-1 envelope protein 120 (gp120), the hybridoma extract was able to fully N-glycosylate gp120. During cell-free translation, eIF2alpha and eIF2alpha-kinases in the hybridoma extracts were observed to become phosphorylated due to the presence of essential supplements creatine phosphate and ATP. Addition of recombinant GADD34 and/or K3L to the extract efficiently lowered the phosphorylation of eIF2alpha, and thereby increased protein synthesis. By using this improved system, biologically active human choriogonadotropin (hCG), a glycoprotein hormone consisting of alpha and beta subunits was successfully synthesized. In conclusion, the hybridoma extract supplemented with GADD34/K3L should become a useful tool to produce recombinant glycoproteins.  相似文献   

7.
8.
9.
Eukaryotic translation initiation factor eIF4B is necessary for ribosomal scanning through structured mRNA leaders. In higher eukaryotes, eIF4B serves as a downstream effector of several signaling pathways. In response to mitogenic stimuli, eIF4B undergoes multiple phosphorylations which are thought to regulate its activity. Recently, Ser422 was identified as a predominant site for human eIF4B phosphorylation via several signaling pathways, and phosphomimetic amino acid substitutions S422D or S422E were shown to activate eIF4B in living cells. However, stimulatory role of these modifications has never been analyzed directly. Here, using both mammalian reconstituted translation initiation assay and complete cell-free translation system, we perform a comparison of recombinant eIF4B derivatives with the wild type recombinant protein, and do not find any difference in their activities. On the contrary, native eIF4B purified from HeLa cells reveals significantly higher activity in both assays. Thus, the effects of S422D and S422E substitutions on eIF4B activity in living cells observed previously either require some other protein modification(s), or may only be manifested in an intact cell. Our study raises the question on whether the phosphorylation of Ser422 is sufficient for eIF4B activation observed upon mitogenic stimulation.  相似文献   

10.
The protein kinase PKR is a major player in the cellular antiviral response, acting mainly by phosphorylation of the alpha-subunit of the eukaryotic translation initiation factor 2 (eIF2-alpha) to block de novo protein synthesis. PKR activation requires binding of double-stranded RNA or PACT/RAX proteins to its regulatory domain. Since several reports have demonstrated that translation is inhibited in apoptosis, we investigated whether PKR and eIF2-alpha phosphorylation contribute to this process. We show that PKR is proteolysed and that eIF2-alpha is phosphorylated at the early stages of apoptosis induced by various stimuli. Both events coincide with the onset of caspase activity and are prevented by caspase inhibitors. Using site-directed mutagenesis we show that PKR is specifically proteolysed at Asp(251) during cellular apoptosis. This site is cleaved in vitro by recombinant caspase-3, caspase-7, and caspase-8 and not by the proinflammatory caspase-1 and caspase-11. The released kinase domain efficiently phosphorylates eIF2-alpha at the cognate Ser(51) residue, and its overexpression in mammalian cells impairs the translation of its own mRNA and of reporter mRNAs. Our results demonstrate a new and caspase-dependent activation mode for PKR, leading to eIF2-alpha phosphorylation and translation inhibition in apoptosis.  相似文献   

11.
Eukaryotic initiation factor 2B (eIF2B) plays a key role in controlling the initiation of mRNA translation. eIF2B is heteropentamer whose catalytic () subunit promotes GDP/GTP exchange on eIF2. We show here that depriving human cells of amino acids rapidly results in the inhibition of eIF2B, independently of changes in eIF2 phosphorylation. Although amino acid deprivation also inhibits signaling through the mammalian target of rapamycin complex 1 (mTORC1), the inhibition of eIF2B activity by amino acid starvation is independent of mTORC1. Instead, amino acids repress the phosphorylation of a novel site in eIF2B. We identify this site as Ser525, located adjacent to the known phosphoregulatory region in eIF2B. Mutation of Ser525 to Ala abolishes the regulation of eIF2B and protein synthesis by amino acids. This indicates that phosphorylation of this site is crucial for the control of eIF2B and protein synthesis by amino acids. These findings identify a new way in which amino acids regulate a key step in translation initiation and indicate that this involves a novel amino acid-sensitive signaling mechanism.  相似文献   

12.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

13.
The α-subunit of eukaryotic initiation factor eIF2 (eIF2α) plays an important role in the regulation of mRNA translation through modulation of the interaction of eIF2 and a second initiation factor, eIF2B. The interaction of the two proteins is regulatedin vivoby phosphorylation of eIF2α at Ser51. In the present study, rat eIF2α was expressed in Sf21 cells using the baculovirus expression system. The recombinant protein was purified to >90% homogeneity in a single immunoaffinity chromatographic step. The protein was free of endogenous eIF2α kinase activity and was rapidly phosphorylated by the eIF2α kinases HCR and PKR. A variant of eIF2α in which the phosphorylation site was changed to Ala was also expressed and purified. The variant eIF2α was not phosphorylated by either HCR or PKR, demonstrating that the kinases specifically phosphorylate the correct site in the recombinant protein even in the absence of the other two subunits of the protein. In summary, a rapid and inexpensive method for obtaining eIF2α has been developed. Use of the wildtype and variant forms of eIF2α to measure eIF2α kinase activity in cell and tissue extracts should greatly facilitate examination of the regulation of mRNA translation under a variety of conditions.  相似文献   

14.
Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3.  相似文献   

15.
We have recently reported that HIV-1 protease (PR) cleaves the initiation factor of translation eIF4GI [Ventoso et al., Proc. Natl. Acad. Sci. USA 98 (2001) 12966-12971]. Here, we analyze the proteolytic activity of HIV-1 PR on eIF4GI and eIF4GII and its implications for the translation of mRNAs. HIV-1 PR efficiently cleaves eIF4GI, but not eIF4GII, in cell-free systems as well as in transfected mammalian cells. This specific proteolytic activity of the retroviral protease on eIF4GI was more selective than that observed with poliovirus 2A(pro). Despite the presence of an intact endogenous eIF4GII, cleavage of eIF4GI by HIV-1 PR was sufficient to impair drastically the translation of capped and uncapped mRNAs. In contrast, poliovirus IRES-driven translation was unaffected or even enhanced by HIV-1 PR after cleavage of eIF4GI. Further support for these in vitro results has been provided by the expression of HIV-1 PR in COS cells from a Gag-PR precursor. Our present findings suggest that eIF4GI intactness is necessary to maintain cap-dependent translation, not only in cell-free systems but also in mammalian cells.  相似文献   

16.
N Mori  Y Funatsu  K Hiruta  S Goto 《Biochemistry》1985,24(5):1231-1239
A novel method was developed to estimate the translational fidelity of mammalian ribosomes in vitro with protamine mRNA of rainbow trout as template. Protamines are mixtures of basic proteins consisting of only seven types of amino acids (Arg, Ile, Val, Ser, Pro, Ala, and Gly), arginine (codon, AGR and CGN) being abundant. Taking advantage of the absence of lysine (codon, AAG) in the proteins, we determined the misincorporation of this amino acid into protamines in a cell-free translation system consisting of mouse liver ribosomes, protamine mRNA, [3H]lysine, [14C]arginine, and seven unlabeled amino acids: Ile, Val, Ser, Pro, Ala, Gly, and Met. After the reaction, translation products were analyzed by either sucrose gradient centrifugation or polyacrylamide gel electrophoresis. In the former method, radioactive protamines are mostly found on monosomes, but not on polysomes, probably because of the basic nature of the proteins. The error frequency was calculated from the molar ratio of [3H]lysine to [14C]arginine incorporated into protamines with an appropriate correction. The frequency was found to be 0.0006-0.002. This method enabled us to determine the frequency of misrecognition of purine bases at the second position of arginine codons in mRNA.  相似文献   

17.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.  相似文献   

18.
Eukaryotic translation initiation factor 4E (eIF4E) binds to the cap structure at the 5' end of mRNAs and is a critical target for the control of protein synthesis. eIF4E is phosphorylated in many systems in response to extracellular stimuli, but biochemical evidence to date has been equivocal as to the biological significance of this modification. Here we use a genetic approach to this problem. We show that, in Drosophila melanogaster, homozygous eIF4E mutants arrest growth during larval development. In Drosophila eIF4EI, Ser251 corresponds to Ser209 of mammalian eIF4E, which is phosphorylated in response to extracellular signals. We find that, in vivo, eIF4EI Ser251 mutants cannot incorporate labeled phosphate. Furthermore, transgenic Drosophila organisms expressing eIF4E(Ser251Ala) in an eIF4E mutant background have reduced viability. Escapers develop more slowly than control siblings and are smaller. These genetic data provide evidence that eIF4E phosphorylation is biologically significant and is essential for normal growth and development.  相似文献   

19.
The eucaryotic translation initiation factor 4B (eIF4B) stimulates the helicase activity of the DEAD box protein eIF4A to unwind inhibitory secondary structure in the 5' untranslated region of eucaryotic mRNAs. Here, using phosphopeptide mapping and a phosphospecific antiserum, we identify a serum-responsive eIF4B phosphorylation site, Ser422, located in an RNA-binding region required for eIF4A helicase-promoting activity. Ser422 phosphorylation appears to be regulated by the S6Ks: (a) Ser422 phosphorylation is sensitive to pharmacological inhibitors of phosphoinositide-3 kinase and the mammalian target of rapamycin; (b) S6K1/S6K2 specifically phosphorylate Ser422 in vitro; and (c) rapamycin-resistant S6Ks confer rapamycin resistance upon Ser422 phosphorylation in vivo. Substitution of Ser422 with Ala results in a loss of activity in an in vivo translation assay, indicating that phosphorylation of this site plays an important role in eIF4B function. We therefore propose that eIF4B may mediate some of the effects of the S6Ks on translation.  相似文献   

20.
There are a growing number of reports on the beneficial effects of subphysiological temperature in vitro culturing (27–35°C) of mammalian cells on recombinant protein yield. However, this effect is not conserved across cell lines and target products, and our understanding of the molecular mechanism(s) responsible for increased recombinant protein yield upon reduced temperature culturing of mammalian cells is poor. What is known is that mammalian cells respond to cold-shock by attenuating global cap-dependent translation. Here, we have investigated the hypothesis that the cap-dependent attenuation of mRNA translation upon cold-stress of in vitro-cultured mammalian cells can be prevented, or at least alleviated, by overexpressing mutant translation initiation factors in Chinese hamster ovary and HeLa cells. We have shown that the transient coexpression of either an eIF2αSer51→Ala51 mutant or an eIF4ESer209→Glu209 mutant with firefly luciferase affects luciferase expression levels in a cell line and temperature dependent manner. Further, regardless of the coexpression of initiation factors, transient reporter gene expression was enhanced at subphysiological temperatures (<37°C), suggesting that reduced temperature cultivation can be used to improve the yield of recombinant protein during transient expression. The implications of these results upon cell engineering strategies involving manipulation of the translational apparatus for the enhancement of recombinant protein synthesis upon cold-shock are discussed. Joint first authors who contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号