首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epidermis and its appendages provide organisms with protection from the environment, keeping pathogens out and preventing the loss of essential body fluids. To perform both functions, the skin has elaborated a complex differentiation process known as cornification. The renewal capacity of the skin, which is responsible for maintaining tissue homeostasis, regenerating hair and repairing the epidermis after injury, resides in the basal proliferating compartment in which epidermal stem cells are located. These cells possess the remarkable capacity to both self-perpetuate and give rise to the differentiating cells that form mature tissues. Recent findings indicate that microRNAs have an essential role in orchestrating the formation of epidermis and skin appendages, in particular, at the interface between stemness and differentiation.  相似文献   

2.
Skin and its appendages provide a protective barrier against the assaults of the environment. To perform its role, epidermis undergoes an ongoing renewal through a balance of proliferation and differentiation/apoptosis called homeostasis. Keratinocyte stem cells reside in a special microenvironment called niche in basal epidermis, adult hair follicle, and sebaceous glands. While a definite marker has yet to be detected, data raised part in humans and part in the mouse system point to a critical role of stem and its progeny transit amplifying cells in epidermal homeostasis. Stem cells are protected from apoptosis and are long resident in adult epidermis. This renders them more prone to be the origin of skin cancer. In this review, we will outline the main features of adult stem cells in mouse and humans and discuss their fate in relation to differentiation, apoptosis, and cancer. J. Cell. Physiol. 225: 310–315, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Tissues which undergo constant regeneration have developed a complex and tightly regulated system of replication and differentiation. The most primitive progenitor cells in these populations are termed stem cells. Much has been learned in recent years about the nature of stem cells and the dynamics of their replication, especially within hematopoietic tissues. This paper will define eight general features of stem cells, as they have been characterized in hematopoietic populations, and then review their presence in several keratinocyte populations, including corneal epithelium, interfollicular epidermis and hair follicle. Finally, this review will raise several important questions that remain unanswered about the nature of keratinocyte stem cells and hopefully will be the focus of future research.  相似文献   

4.
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.  相似文献   

5.
6.
成体的皮肤一生都在不断的自我更新,其中的毛囊还是保证毛发进行生长-脱落周期循环的细胞组织学基础。存在于表皮内的干细胞维持了成体皮肤的自我平衡及毛发再生。表皮是由构体分子组成。每个构体分子包含毛皮脂单位(毛囊和皮脂腺)及其周围的毛囊间表皮。毛囊间表皮具有祖细胞,损伤时能自我更新;毛囊具有多能干细胞,在新毛发周期开始或者损伤时能够启动干细胞功能,为毛囊的生长或表皮的修复提供细胞来源。本文概述了当前对表皮干细胞的认识,着重阐明毛囊间表皮内有祖细胞的证据,毛囊间表皮干细胞在体外的自我更新能力,毛囊膨突部内干细胞的特征和一些相关基因的表达等。  相似文献   

7.
Phospholipase Cdelta1 is required for skin stem cell lineage commitment   总被引:1,自引:0,他引:1  
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. Here we report that PLCdelta(1)-deficient mice undergo progressive hair loss in the first postnatal hair cycle. Epidermal hyperplasia was observed, and many hairs in the skin of PLCdelta(1)-deficient mice failed to penetrate the epidermis and became zigzagged owing to occlusion of the hair canal. Two major downstream signals of PLC, calcium elevation and protein kinase C activation, were impaired in the keratinocytes and skin of PLCdelta(1)-deficient mice. In addition, many cysts that had remarkable similarities to interfollicular epidermis, as well as hyperplasia of sebaceous glands, were observed. Furthermore, PLCdelta(1)-deficient mice developed spontaneous skin tumors that had characteristics of both interfollicular epidermis and sebaceous glands. From these results, we conclude that PLCdelta(1) is required for skin stem cell lineage commitment.  相似文献   

8.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

9.

Background

The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue.

Scope of review

A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer.

Major conclusions

An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis.

General significance

Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

10.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

11.
Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.  相似文献   

12.
Using K14deltaNbeta-cateninER transgenic mice, we show that short-term, low-level beta-catenin activation stimulates de novo hair follicle formation from sebaceous glands and interfollicular epidermis, while only sustained, high-level activation induces new follicles from preexisting follicles. The Hedgehog pathway is upregulated by beta-catenin activation, and inhibition of Hedgehog signaling converts the low beta-catenin phenotype to wild-type epidermis and the high phenotype to low. beta-catenin-induced follicles contain clonogenic keratinocytes that express bulge markers; the follicles induce dermal papillae and provide a niche for melanocytes, and they undergo 4OHT-dependent cycles of growth and regression. New follicles induced in interfollicular epidermis are derived from that cellular compartment and not through bulge stem cell migration or division. These results demonstrate the remarkable capacity of adult epidermis to be reprogrammed by titrating beta-catenin and Hedgehog signal strength and establish that cells from interfollicular epidermis can acquire certain characteristics of bulge stem cells.  相似文献   

13.
Epidermal stem cells are resistant to cellular aging   总被引:2,自引:1,他引:1  
The epidermis of the skin, acting as the primary physical barrier between self and environment, is a dynamic tissue whose maintenance is critical to the survival of an organism. Like most other tissues and organs, the epidermis is maintained and repaired by a population of resident somatic stem cells. The epidermal stem cells reside in the proliferative basal cell layer and are believed to persist for the lifetime of an individual. Acting through intermediaries known as transit amplifying cells, epidermal stem cells ensure that the enormous numbers of keratinocytes required for epidermal homeostasis to be maintained are generated. This continual demand for new cell production must be met over the entire lifetime of an individual. Breakdown of the epidermal barrier would have catastrophic consequences. This leads us to question whether or not epidermal stem cells represent a unique population of cells which, by necessity, might be resistant to cellular aging. We hypothesized that the full physiologic functional capacity of epidermal stem cells is maintained over an entire lifetime. Using murine skin epidermis as our model system, we compared several properties of young and old adult epidermal stem cells. We found that, over an average mouse's lifetime, there was no measurable loss in the physiologic functional capacity of epidermal stem cells, leading us to conclude that murine epidermal stem cells resist cellular aging.  相似文献   

14.
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.  相似文献   

15.
The adult hair follicle: cradle for pluripotent neural crest stem cells   总被引:6,自引:0,他引:6  
This review focuses on the recent identification of two novel neural crest-derived cells in the adult mammalian hair follicle, pluripotent stem cells, and Merkel cells. Wnt1-cre/R26R compound transgenic mice, which in the periphery express beta-galactosidase in a neural crest-specific manner, were used to trace neural crest cells. Neural crest cells invade the facial epidermis as early as embryonic day 9.5. Neural crest-derived cells are present along the entire extent of the whisker follicle. This includes the bulge area, an epidermal niche for keratinocyte stem cells, as well as the matrix at the base of the hair follicle. We have determined by in vitro clonal analysis that the bulge area of the adult whisker follicle contains pluripotent neural crest stem cells. In culture, beta-galactosidase-positive cells emigrate from bulge explants, identifying them as neural crest-derived cells. When these cells are resuspended and grown in clonal culture, they give rise to colonies that contain multiple differentiated cell types, including neurons, Schwann cells, smooth muscle cells, pigment cells, chondrocytes, and possibly other types of cells. This result provides evidence for the pluripotentiality of the clone-forming cell. Serial cloning showed that bulge-derived neural crest cells undergo self-renewal, which identifies them as stem cells. Pluripotent neural crest cells are also localized in the back skin hair of adult mice. The bulge area of the whisker follicle is surrounded by numerous Merkel cells, which together with innervating nerve endings form slowly adapting mechanoreceptors that transduce steady skin indentation. Merkel cells express beta-galactosidase in double transgenic mice, which confirms their neural crest origin. Taken together, our data indicate that the epidermis of the adult hair follicle contains pluripotent neural crest stem cells, termed epidermal neural crest stem cells (eNCSCs), and one newly identified neural crest derivative, the Merkel cell. The intrinsic high degree of plasticity of eNCSCs and the fact that they are easily accessible in the skin make them attractive candidates for diverse autologous cell therapy strategies.  相似文献   

16.
The regeneration of the skin and its appendages is thought to occur by the regulated activation of a dedicated stem cell population. A population of cells in the bulge region of the hair follicle has been identified as the putative stem cell of both the follicle and the interfollicular epidermis. While this assertion is supported by a variety of surrogate assays, there has been no direct confirmation of the normal contribution of these cells to the regeneration of structures other than the cycling portion of the hair follicle. Here, we report lineage analysis revealing that the follicular epithelium is derived from cells in the epidermal placode that express Sonic hedgehog. This analysis also demonstrates that the stem cells resident in the follicular bulge that regenerate the follicle are neither the stem cells of the epidermis nor the source of the stem cells of the epidermis in the absence of trauma.  相似文献   

17.
Taylor G  Lehrer MS  Jensen PJ  Sun TT  Lavker RM 《Cell》2000,102(4):451-461
The location of follicular and epidermal stem cells in mammalian skin is a crucial issue in cutaneous biology. We demonstrate that hair follicular stem cells, located in the bulge region, can give rise to several cell types of the hair follicle as well as upper follicular cells. Moreover, we devised a double-label technique to show that upper follicular keratinocytes emigrate into the epidermis in normal newborn mouse skin, and in adult mouse skin in response to a penetrating wound. These findings indicate that the hair follicle represents a major repository of keratinocyte stem cells in mouse skin, and that follicular bulge stem cells are potentially bipotent as they can give rise to not only the hair follicle, but also the epidermis.  相似文献   

18.
The homeostasis of continuously renewing human epidermis relies on the presence of adult stem cells, residing in the basal layer. Epidermal stem cells have been enriched and functionally characterized, but the exact location remained elusive. The human hair follicle and its pigmentation unit also cyclically regenerate from stem cells. Contrary to epidermal stem cells, human hair follicle stem cells have been localized, enriched, functionally and biochemically characterized. Their specific gene expression pattern has been established. The melanocyte stem population has also been localized and characterized. Finally, the hair follicle was found to harbor a number of other multipotent cells, which designates this unique organ as an alternative source of stem cells for tissue regeneration.  相似文献   

19.
Cell death in the skin   总被引:1,自引:0,他引:1  
The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults, such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death, called cornification, which is different from classical apoptosis. In keep with this view, several lines of evidence indicate that NF-kB is an important factor providing protection against keratinocyte apoptosis in homeostatic and inflammatory conditions. In contrast, the hair follicle is an epidermal appendage that shows cyclic apoptosis-driven involution, as part of the normal hair cycle. The different cell death programs need to be well orchestrated to maintain skin homeostasis. One of the major environmental insults to the skin is UVB radiation, causing the occurrence of apoptotic sunburn cells. Deregulation of cell death mechanisms in the skin can lead to diseases such as cancer, necrolysis and graft-versus-host disease. Here we review the apoptotic and the anti-apoptotic mechanisms in skin homeostasis and disease.  相似文献   

20.
Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号