共查询到20条相似文献,搜索用时 0 毫秒
1.
Wohlgemuth I Pohl C Mittelstaet J Konevega AL Rodnina MV 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1580):2979-2986
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity. 相似文献
2.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation. 相似文献
3.
We isolated and characterized a cDNA for the N-terminal half of the eukaryotic initiation of translation factor 2 (cIF2) during a screen of chicken osteoblast cDNAs. The apparent size of the message for this protein, approximately 5.6 kb, is slightly larger in size than that for human IF2 (hIF2). There is a high degree of sequence similarity between the human and chicken N-terminal portions of the protein that extends to the encoding nucleotide sequence. The tissue specific expression pattern for cIF2 and hIF2 are similar, being moderately abundant in brain, liver, and skeletal muscle, and detectable in kidney, chondrocytes, and freshly isolated osteoblasts. The ratio of message for cIF2 to that of beta-actin was 0.10 and 0.18 for liver and brain. Message levels peak in osteoblasts between 8 and 12 days of culture, coinciding with high levels of matrix protein synthesis. At peak expression, the ratio of cIF2:beta-actin for 8 day osteoblasts was 0.76. Treatment of osteoblast cultures with cycloheximide markedly reduces the level of cIF2 message indicating that novel protein synthesis is required for its expression. Hybridization of RNA samples from either chicken osteoblasts or a human osteoblast cell line with a probe for a subunit of human eukaryotic initiation of translation factor 2 (eIF2alpha), the housekeeping initiation factor, indicates that levels of eIF2 remain low. With hIF2, cIF2 represents the only other vertebrate homolog of IF2 for which a major portion of the coding sequence has been identified. This is the first report of regulated expression for a eukaryotic IF2 and is the first demonstration of its abundance in osteoblasts. 相似文献
4.
谢兆辉 《中国生物化学与分子生物学报》2011,27(9):812-819
蛋白质合成的忠实性对细胞活力非常重要,否则会干扰细胞的生理过程,甚至导致疾病. 生物已经进化出多种机制以维持翻译的准确性,包括底物选择、校对和转肽后的质量控制机制.这些机制在氨基酸活化、翻译起始、延伸和终止等不同阶段发挥作用. 现在,对蛋白质合成的研究已经延伸到了其它领域,如病原体致病机制、耐药性,以及药物开发等. 本文主要综述了蛋白质合成起始、延伸和终止过程的忠实性机制,以及mRNA的质量控制方式,并对相关研究在抗生素药物及药物靶点开发方面的应用前景做了展望. 相似文献
5.
The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis
下载免费PDF全文

Francesca Tuorto Friederike Herbst Nader Alerasool Sebastian Bender Oliver Popp Giuseppina Federico Sonja Reitter Reinhard Liebers Georg Stoecklin Hermann‐Josef Gröne Gunnar Dittmar Hanno Glimm Frank Lyko 《The EMBO journal》2015,34(18):2350-2362
The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2‐deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell‐autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA AspGTC, GlyGCC, and ValAAC, thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2‐dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near‐cognate codons, thereby ensuring accurate polypeptide synthesis. 相似文献
6.
Faithful decoding of the genetic information by the ribosome relies on kinetically driven mechanisms that promote selection of cognate substrates during elongation. Recently, we have shown that in addition to these kinetically driven mechanisms, the ribosome possesses a post peptidyl transfer quality control system that retrospectively monitors the codon–anticodon interaction in the P site, triggering substantial losses in the specificity of the A site during subsequent tRNA and RF selection when a mistake has occurred. Here, we report a detailed kinetic analysis of tRNA selection in the context of a mismatched P-site codon:anticodon interaction. We observe pleiotropic effects of a P-site mismatch on tRNA selection, such that near-cognate tRNA is processed by the ribosome almost as efficiently as cognate. In particular, after a miscoding event, near-cognate codon–anticodon complexes are stabilized on the ribosome to an extent similar to that observed for cognate ones. Moreover, the two observed forward rates of GTPase activation and accommodation are greatly accelerated (∼10-fold) for near-cognate tRNAs. Because the ensemble of effects of a mismatched P site on substrate selection were found to be different from those reported for other ribosomal perturbations and miscoding agents, we propose that the structural integrity of the mRNA–tRNA helix in the P site provides a distinct molecular switch that dictates the specificity of the A site. 相似文献
7.
A protein synthesis system is one of the most important and complex biological networks, which translates DNA-encoded information into specific functions. Here, ePURE_JSBML, a tool for constructing biologically relevant large-scale and detailed computational models based on a reconstituted cell-free protein synthesis system, is presented; the user can specify the mRNA sequence, initial component concentration, and decoding rule. Model construction is based on Systems Biology Markup Language (SBML) using JSBML, a pure Java programming library. The tool generates simulation files, executable with Matlab, that enable a variety of simulation experiments including the synthesis of proteins of a few hundred residues. 相似文献
8.
Arluison V Mutyam SK Mura C Marco S Sukhodolets MV 《Protein science : a publication of the Protein Society》2007,16(9):1830-1841
Sm-like proteins are ubiquitous ring-shaped oligomers that exhibit a variety of nucleic acid-binding activities. They have been linked functionally to various cellular events involving RNA, and it is generally believed that their activity is exerted via the passive binding of nucleic acids. Our earlier studies of the Sm-like Escherichia coli protein Hfq provided the first evidence indicating that Hfq is an ATP-binding protein. Using a combination of biochemical and genetic techniques, we have now determined a plausible ATP-binding site in Hfq and tested Hfq's ATP-binding affinity and stoichiometry. The results of RNA footprinting and binding analyses suggest that ATP binding by the Hfq-RNA complex results in its significant destabilization. RNA footprinting indicates deprotection of Hfq-bound RNA tracts in the presence of ATP, suggestive of their release by the protein. The results reported herein broaden the scope of potential in vivo roles for Hfq and other Sm-like proteins. 相似文献
9.
CCA-adding enzyme builds the 3'-end CCA of tRNA without a nucleic acid template. The mechanism for the maintenance of fidelity during the CCA-adding reaction remains elusive. Here, we present almost a dozen complex structures of the class I CCA-adding enzyme and tRNA mini-helices (mini-D(73)N(74), mini-D(73)N(74)C(75) and mini-D(73)C(74)N(75); D(73) is a discriminator nucleotide and N is either A, G, or U). The mini-D(73)N(74) complexes adopt catalytically inactive open forms, and CTP shifts the enzymes to the active closed forms and allows N(74) to flip for CMP incorporation. In contrast, unlike the catalytically active closed form of the mini-D(73)C(74)C(75) complex, the mini-D(73)N(74)C(75) and mini-D(73)C(74)N(75) complexes adopt inactive open forms. Only the mini-D(73)C(74)U(75) accepts AMP to a similar extent as mini-D(73)C(74)C(75), and ATP shifts the enzyme to a closed, active form and allows U(75) to flip for AMP incorporation. These findings suggest that the 3'-region of RNA is proofread, after two nucleotide additions, in the closed, active form of the complex at the AMP incorporation stage. This proofreading is a prerequisite for the maintenance of fidelity for complete CCA synthesis. 相似文献
10.
Ryuya Fukunaga Shigeyuki Yokoyama 《Acta Crystallographica. Section D, Structural Biology》2007,63(3):390-400
The editing domain of alanyl‐tRNA synthetase (AlaRS) contributes to high‐fidelity aminoacylation by hydrolyzing (editing) the incorrect products Ser‐tRNAAla and Gly‐tRNAAla (cis‐editing). The AlaX protein shares sequence homology to the editing domain of AlaRS. There are three types of AlaX proteins, with different numbers of amino‐acid residues (AlaX‐S, AlaX‐M and AlaX‐L). In this report, AlaX‐M from Pyrococcus horikoshii is shown to deacylate Ser‐tRNAAla and Gly‐tRNAAla (trans‐editing). The crystal structure of P. horikoshii AlaX‐M has been determined at 2.7 Å resolution. AlaX‐M consists of an N‐terminal domain (N‐domain) and a C‐terminal domain (C‐domain). A zinc ion is coordinated by the conserved zinc‐binding cluster in the C‐domain, which is expected to be the enzymatic active site. The glycine‐rich motif, consisting of successive conserved glycine residues in the N‐domain, forms a loop (the `glycine‐rich loop'). The glycine‐rich loop is located near the active site and may be involved in substrate recognition and/or catalysis. 相似文献
11.
Translational quality control is monitored at several steps, including substrate selection by aminoacyl-tRNA synthetases (aaRSs), and discrimination of aminoacyl-tRNAs by elongation factor Tu (EF-Tu) and the ribosome. Phenylalanyl-tRNA synthetase (PheRS) misactivates Tyr but is able to correct the mistake using a proofreading activity named editing. Previously we found that overproduction of editing-defective PheRS resulted in Tyr incorporation at Phe-encoded positions in vivo, although the misreading efficiency could not be estimated. This raised the question as to whether or not EF-Tu and the ribosome provide further proofreading mechanisms to prevent mistranslation of Phe codons by Tyr. Here we show that, after evading editing by PheRS, Tyr-tRNA(Phe) is recognized by EF-Tu as efficiently as the cognate Phe-tRNA(Phe). Kinetic decoding studies using full-length Tyr-tRNA(Phe) and Phe-tRNA(Phe), as well as a poly(U)-directed polyTyr/polyPhe synthesis assay, indicate that the ribosome lacks discrimination between Tyr-tRNA(Phe) and Phe-tRNA(Phe). Taken together, these data suggest that PheRS editing is the major proofreading step that prevents infiltration of Tyr into Phe codons during translation. 相似文献
12.
Francesca Tuorto Carine Legrand Cansu Cirzi Giuseppina Federico Reinhard Liebers Martin Müller Ann E Ehrenhofer‐Murray Gunnar Dittmar Hermann‐Josef Gröne Frank Lyko 《The EMBO journal》2018,37(18)
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis. 相似文献
13.
Based on a computational analysis of the 5' regions of tRNA-encoding genes, the average length of the 5' leaders in tRNA precursors in Escherichia coli appears to be 17-18 residues long. An in vivo assay based on tRNA nonsense suppression was developed and used to investigate the function of the 5' leader of the tRNA precursors on tRNA processing and bacterial growth. Our data indicate that the 5' leader influences bacterial growth but is surprisingly not absolutely necessary for growth. These findings are consistent with previous in vitro data where it was demonstrated that the 5' leader plays a role in the interaction with RNase P, the endoribonuclease responsible for removing the 5' leader in the cell. We discuss the plausible role of the 5' leader in processing and tRNA gene expression. 相似文献
14.
15.
16.
17.
18.
Jacob Gubbens Soo Jung Kim Zhongying Yang Arthur E. Johnson William R. Skach 《RNA (New York, N.Y.)》2010,16(8):1660-1672
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. 相似文献
19.
《Cell metabolism》2021,33(11):2288-2300.e12
- Download : Download high-res image (184KB)
- Download : Download full-size image
20.
膜上tRNA结合蛋白的分离与初步鉴定 总被引:1,自引:0,他引:1
用TritonX-114分相法分离啤酒酵母的膜总蛋白,经过酵母tRNA分子交联的Sepharose4B亲和层析,用0-0.8mol/L(NH402SO4梯度缓冲液洗脱tRNA结合的蛋白质。凝胶阻滞电泳实验室鉴定出两种主要的与tRNA分子特异性结合的蛋白质。 相似文献