首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extent of infectious xenotropic virus expression in homogenized splenic tissues from the high-virus-expressing NZB/BINJ mice and the non-virus-expressing 129/J mice and their crosses has been examined. The data suggest that a single autosomal "dominant-like" gene controls the spontaneous production and release of infectious xenotropic virus in NZB mice. Analysis of infectious virus production in second-backcross families [(F1 X 129) X 129] confirmed this conclusion. Variations in the amount of X-tropic virus released were evident in all genetic crosses. Virus titers (expressed as focus-forming units per milliliter) of supernatant fluid ranged from high levels in the NZB mice to somewhat lower levels in crosses involving the 129 mice. In the absence of a definite pattern in the titers observed in the genetic crosses studied, the term dominant-like is proposed for the single gene regulating the expression of X-tropic virus in NZB mice.  相似文献   

2.
A Mayer  M L Duran-Reynals  F Lilly 《Cell》1978,15(2):429-435
The incidence of spontaneous thymic lymphoma has been studied in crosses between AKR/J and RF/J mice. AKR mice develop a high incidence of this disease. RF mice transmit a marked resistance to development of the disease to F1 hybrid mice of the AKR x RF cross. This resistance is associated with a reduction of endogenous ecotropic and xenotropic MuLV expression in the prelymphomatous thymus. The RF gene governing the coordinate suppression of these three phenotypes has been mapped to the Fv-1 locus. These results indicate that the particular Fv-1 allele of AKR mice provides a permissive genetic background for endogenous ecotropic and xenotropic MuLV expression and that these viral activities may be etiologically involved in the development of spontaneous thymic lymphoma in the mouse.  相似文献   

3.
We have analyzed the effects of an antiserum prepared against BALB/c endogenous xenotropic C-type virus on the humoral immune response of mice. Both in vivo and in vitro, this serum suppresses the response to sheep red blood cells, an effect that can be absorbed out by purified BALB/c xenotropic C-type virus or Friend leukemia virus, but not by Rous sarcoma virus. The serum produces its maximum effect when administered together with or before the antigen, but not 24 hr later. This suggests that it acts on an early event of the immune response. Evidence is presented to show that the critical viral antigen is expressed before the spleen cells are experimentally stimulated by antigen. The same immunosuppressive effect was observed in a variety of mouse strains, including the high-leukemia incidence AKR strain and virus-free 129/J mice, indicating that it is independent of the expression of endogenous virus. The finding that a viral antigen is involved in the transition from a resting to a dividing lymphocyte is discussed with respect to viral involvement in leukemia.  相似文献   

4.
Resistant C57BL/6J and susceptible DBA/2J mice were exposed to aerosols of Sendai virus and killed at intervals to 12 days. Lungs were removed and assayed for infectious virus and interferon. Mean virus titers were 6 to 400 times higher in DBA/2J mice than in C57BL/6J mice 3 to 10 days after exposure. Mean interferon titers were 10 to 140 times higher in DBA/2J mice than in C57BL/6J mice 4 to 7 days after exposure. These results suggest that genetic resistance to the lethal effects of Sendai virus is expressed through control of viral replication within the first 72 hours of infection and that early expression of inherited resistance is not regulated by interferon.  相似文献   

5.
An ecotropic murine leukemia virus (MuLV) isolate has recently been shown to be able to infect the germ line or the early embryo or both when inoculated at birth to SWR/J females (J. J. Panthier, H. Condamine, and F. Jacob, Proc. Natl. Acad. Sci. USA 85:1156-1160, 1988). We have used this isolate to further study this phenomenon. By using the techniques of RNA-RNA in situ hybridization, immunocytochemistry, and transmission electron microscopy, the identities of two important cell types that are infected by ecotropic MuLV in the gonads of inoculated mice were determined. These cells are the thecal cells surrounding the follicles in the ovary and the Leydig cells in the testis. Both types actively synthesize viral RNA and express a viral antigen. Furthermore, we documented the production of viral particles by the thecal cells. The expression of ecotropic MuLV by nonlymphoid cells in vivo may play a key role in the vertical transmission of these viruses by females as well as in their horizontal transmission.  相似文献   

6.
M Grompe  L Kreja  J Schmidt  H J Seidel 《Blut》1985,51(6):377-384
The expression of RNA tumor virus was studied in BDF 1 mice after leukemogenic treatment with a single dose of methylnitrosourea (MNU) and in leukemic thymuses by a cell ELISA using antibodies against the viral glycoprotein gp 70 and by co-culture for the detection of eco- and xenotropic virus. The majority of the thymomas were positive for gp 70; ecotropic, but not xenotropic infectious virus could be detected in some of them. Early after MNU application the thymus and the bone marrow were positive for gp 70 in some animals. Later, after a phase with positive results with spleen cells, the bone marrow and the spleen were negative again. Only the thymus of some mice were positive during the last weeks before the first leukemias appeared.  相似文献   

7.
8.
The E variant of encephalomyocarditis (EMC) virus causes an encephalomyelitis and coagulative necrosis of the pancreas and parotid glands in some but not all strains of inbred and outbred mice. In other models of disease caused by picornaviruses, depletion of specific lymphocyte subsets abrogates the development of tissue lesions. In this study, severe encephalomyelitis and acinar pancreatitis and parotitis developed in adult male A/J mice infected with 100 PFU of EMC virus. Depletion of the CD4+ subset of T lymphocytes in vivo with a monoclonal antibody (MAb) prior to EMC virus inoculation protects mice from developing encephalomyelitis, pancreatitis, and parotitis. This effect is also seen when animals are treated with anti-CD4 and anti-CD8 in combination, but the anti-CD8 MAb alone does not ameliorate the disease. Overall, concentrations of virus in tissues from anti-CD4-treated animals are lower than in immunologically intact control mice. Small-plaque variants of virus were also recovered from the tissues in some animals in this group. CD4+ lymphocytes are involved in the expression of EMC virus-induced pancreatitis and parotitis in A/J mice. This specific subset of T cells would appear to influence EMC viral tropism or replication in various organs.  相似文献   

9.
We studied the appearance and structure of murine leukemia viral genomes in preleukemic AKR/J mice by Southern hybridization. Up to an average of one to two copies per thymocyte of unintegrated murine leukemia virus DNA appears in the thymuses of preleukemic mice beginning at 4 to 5 months of age and disappears in leukemic thymuses. The free viral genomes are absent in the spleens, livers, and brains of preleukemic mice. Using a series of ecotropic and nonecotropic murine leukemia virus hybridization probes, we showed that the unintegrated viral genomes are structurally analogous to those of recombinant mink cell focus-forming viruses that appear as proviruses in leukemic AKR thymocytes, suggesting that these free viral DNAs are the direct precursors to the leukemia-specific proviruses. The mosaic of ecotropic and nonecotropic sequences within these unintegrated viral DNAs varies from one preleukemic thymus to another but often appears structurally homogeneous within individual thymuses, indicating that often each thymus was being infected by a unique mink cell focus-forming virus. Analysis of high-molecular-weight DNA shows that recombinant proviruses reside in the chromosomal DNA of thymocytes within the preleukemic thymus, with the number rising to an average of several copies per thymocyte, but we do not detect any preferred integration sites. These results suggest that, in general, before the development of thymic leukemias in AKR mice there is a massive infection by a unique mink cell focus-forming virus which then integrates into many different sites of individual thymocytes, one of which grows out to become a tumor.  相似文献   

10.
The xenotropic mouse type C virus, originally detected in cultured embryo cells from New Zealand Black (NZB) mice, has been recovered from over 50 adult NZB animals and 15 NZB embryos. Its presence is best detected by measuring its ability to rescue a murine sarcoma virus (MSV) genome from a non-virus-producing MSV-transformed rat cell. The virus can serve as a helper for replication of MSV. It has a distinct type-specific coat and is a prototype for a third serotype of mouse type C viruses, NZB. The xenotropic virus may have an evolutionary role since it has a wide host range, including the ability to infect avian cells. It is produced spontaneously by all cells cultivated from NZB tissues and accounts for the high concentration of viral antigens associated with NZB tissues. The extent of virus production is similar in both male and female mice. All cell clones established from embryos also produce the virus. A variability in the intracellular regulation of virus replication is suggested since tissue cells from the same animal differ quantitatively in their ability to produce xenotropic viruses. Since enhanced spontaneous virus production is associated with cells from NZB mice, the virus may play a role in the autoimmune disease of this mouse strain.  相似文献   

11.
The sequence of 863 contiguous nucleotides encompassing portions of the pol and env genes of NFS-Th-1 xenotropic proviral DNA was determined. This region of the xenotropic murine leukemia virus genome contains and env-specific segment that hybridizes exclusively to xenotropic and mink cell focus-forming but not to ecotropic proviral DNAs (C. E. Buckler et al., J. Virol. 41:228-236, 1982). The unique xenotropic env segment contained several characteristic deletions and insertions relative to the analogous region in AKR and Moloney ecotropic murine leukemia viruses. Portions of an endogenous env segment cloned from a BALB/c mouse embryo gene library that had a restriction map and hybridization properties typical of xenotropic viruses (A. S. Khan et al., J. Virol. 44:625-636, 1982) were also sequenced. The sequence of the endogenous env gene was very similar to the comparable region of the NFS-Th-1 xenotropic virus containing the characteristic deletions and insertions previously observed and could represent a segment of an endogenous xenotropic provirus.  相似文献   

12.
F/St mice are unique in producing high levels of both ecotropic and xenotropic murine leukemia virus. The high ecotropic virus phenotype is determined by three or more V (virus-inducing) loci. A single locus for inducibility of xenotropic murine leukemia virus was mapped to chromosome 1 close to, but possibly not allelic to, Bxv-1. Although the high ecotropic virus phenotype is phenotypically dominant, the high xenotropic virus phenotype was recessive in all crosses tested. Suppression of xenotropic murine leukemia virus is governed by a single gene which is not linked to the xenotropic V locus.  相似文献   

13.
All AKR/J mice carry at least three endogenous ecotropic viral loci which have been designated Emv-11 (Akv-1), Emv-13 (Akv-3), and Emv-14 (Akv-4) (Jenkins et al., J. Virol. 43:26-36, 1982.) Using two independent AKR/J-derived sets of recombinant inbred mouse strains, AKXL (AKR/J x C57L/J) and AKXD (AKR/J x DBA/2J), as well as the HP/EiTy strain (an Emv-13-carrying inbred strain partially related to AKR/J mice) (Taylor et al., J. Virol. 23:106-109, 1977), we have examined the association of these endogenous viral loci with virus expression. Strains which transmit Emv-11 or Emv-14 or both were found to produce virus spontaneously, whereas strains that transmit Emv-13 alone were negative for virus expression. Restriction endonuclease digestion and hybridization with an ecotropic virus-specific hybridization probe of DNAs from strains which transmit only Emv-13 yielded enzyme cleavage patterns identical to those observed with DNAs from strains transmitting Emv-11 or Emv-14 or both. These findings indicate the absence of any gross rearrangement of Emv-13 proviral sequences. Cell cultures derived from recombinant inbred strains that carry only Emv-13 failed to express detectable infectious virus, viral proteins, or cytoplasmic ecotropic virus-specific RNA even after treatment with 5-iodo-2-deoxyuridine or 5-azacytidine, an inhibitor of DNA methylation. Our results indicate that a mechanism(s) other than methylation of Emv-13 proviral DNA is responsible for inhibition of Emv-13 expression.  相似文献   

14.
Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1.  相似文献   

15.
RF/J mice are susceptible to the induction of thymic lymphomas by the carcinogens 3-methylcholanthrene and N-methyl-N-nitrosourea. Given the association of mouse mammary tumor virus (MMTV) with certain thymomas, we examined genomic DNA from chemically induced lymphomas of RF/J mice for new MMTV proviruses. Of 13 tissue culture lines derived from 3-methylcholanthrene-induced tumors, 5 had acquired new proviruses. MMTV amplification coincided with the appearance of viral mRNAs and proteins. However, no primary tumors or animal-passaged tumors contained new proviruses. These observations indicate that MMTV does not have a role in the tumor induction process, although it may become activated and amplified in tissue culture lines derived from tumors.  相似文献   

16.
A considerable increase in chromatid and chromosome breaks, as well as excessive fragmentation and "pulverization" of whole metaphase plates was observed in embryonic fibroblast cultures from New Zealand black mice. A C-type RNA virus with a xenotropic host range was isolated from the supernatant fluid of co-cultures of NZB cells and heterologous permissive cells (SIRC cell line). One of the NZB cultures produced this virus without amplification by co-cultivation after spontaneous transformation of the cells. NZB cells are supposed to lack normal restriction of complete xenotropic virus expression and to release this endogenous virus spontaneously at a high level. It is hypothesized that the excessive chromosome damage observed in these cell cultures is related to the permanent production of virus, thus indicating a chromosome breaking effect of endogenous viruses.  相似文献   

17.
We show that inactivating the beta(2)m gene increases the viral load of SJL/J mice persistently infected by Theiler's virus. Together with previous results, this shows that the characteristics of Tmevp1, a locus which controls the amount of viral RNA that persists in the central nervous system, are those of an H-2 class I gene.  相似文献   

18.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

19.
An NFS/N mouse inoculated at birth with an ecotropic murine leukemia virus (MuLV) obtained from wild mice (Cas-Br-M MuLV) developed a lymphoma after 18 weeks. An extract prepared from the lymphomatous spleen was inoculated into newborn NFS/N mice, and these mice developed erythroleukemia within 9 weeks. Spleens from the erythroleukemic mice contained ecotropic and mink cell focus-inducing (MCF) MuLVs; however, when these viruses were biologically cloned and reinoculated into newborn NFS/N mice, no erythroleukemia was induced. In contrast, cell-free extracts prepared from the erythroleukemic spleens induced erythroleukemia within 5 weeks. Analysis of cell-free extracts prepared from the erythroleukemic spleens showed that they contained a viral species that induced splenomegaly and spleen focus formation in adult mice, with susceptibility controlled by alleles at the Fv-2 locus. The spleen focus-forming virus coded for a 50,000-dalton protein precipitated by antibodies specific to MCF virus gp70. RNA blot hybridization studies showed the genomic viral RNA to be 7.5 kilobases and to hybridize strongly to a xenotropic or MCF envelope-specific probe but not to hybridize with an ecotropic virus envelope-specific probe. The virus described here appears to be the fourth independent isolate of a MuLV with spleen focus-forming activity.  相似文献   

20.
The mixture of retroviruses termed LP-BM5 murine leukemia virus (MuLV) contains a replication-defective genome (BM5def), the crucial element for induction of murine AIDS (MAIDS), as well as helper B-tropic ecotropic and mink cell focus-forming MuLV. Among Fv-1b mouse strains, C57BL mice are sensitive to infection by these viruses and to development of MAIDS, but A/J mice are highly resistant to all viral components and to induction of disease. Inasmuch as previous genetic studies indicated a major role in susceptibility for the H-2D locus within the MHC, the effect of CD8+ T cells in A/J resistance to MAIDS was analyzed by depletion of this subset using mAb. A/J mice treated with anti-CD8 mAb beginning soon after inoculation with LP-BM5 MuLV developed disease within 5 wk after virus inoculation. Histopathologic and flow cytometry alteration of tissues and cells from the mAb-treated mice were identical to those seen in virus-infected MAIDS-sensitive strains, and assays for MuLV demonstrated high-level expression of ecotropic MuLV and integration of BM5def. Parallel studies of A/J mice treated with anti-CD4 mAb after infection revealed enhanced expression of ecotropic MuLV but no integration of BM5def, and no signs of MAIDS were detected. These observations indicate that CD8+ T cells are critical in the resistance of A/J mice to LP-BM5 MuLV replication and development of disease and suggest that CD4+ T cells play a role in regulation of ecotropic virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号