首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of antigen-specific T lymphocyte lines and clones has greatly facilitated the investigation of T-cell recognition of and response to foreign antigens. In the present study, human antigen-specific helper T cell lines and clones which are completely independent of exogenous interleukin-2 (IL-2) have been developed by cyclic restimulation with the soluble antigen keyhole limpet hemocyanin (KLH) to which the T cell donor had previously been immunized. These T cells uniformly bear the OKT4 phenotype and were shown to require both histocompatible antigen-presenting cells (APC) and antigen for optimal proliferation. The T cell line was composed of a highly antigen-specific and clonable T cell population. Following four cycles of antigen stimulation, limiting dilution cloning analysis showed a Poisson distribution of clonable T cells with a precursor frequency of 0.62, and from 88 to 92% of viable clones were specific for the stimulating antigen. Individual clones were obtained which recognized KLH with either DR 1 (one parental Ia haplotype of the donor) or DR 2 (the other parental Ia haplotype) allogeneic APC, but not both. Following stimulation with KLH, the T cell clones produced IL-2. Peak amounts of IL-2 were assayable in the first 6 to 24 hr after stimulation. In contrast, virtually no IL-2 was detectable in supernatants at 72 to 96 hr, suggesting autoutilization by the proliferating T cells. In addition, some clones were also capable of producing both B cell growth factor and IL-2 following KLH stimulation. These IL-2-independent T cells appeared to be derived from a discrete Leu 8-negative subclass of T4+ cells and expressed the full complement of Ia antigen of the donor. Thus, soluble antigen-specific human helper T cell clones have been produced which can be maintained in the absence of exogenous IL-2, elaborate their own growth factors and other immunoregulatory lymphokines, and show fine DR-related restriction to either one or the other parental DR haplotypes in antigen-stimulated proliferative responses.  相似文献   

2.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

3.
The release of immune or gamma interferon (IFN-gamma) by major histocompatibility complex (MHC)-restricted pigeon cytochrome c-specific Lyt 1+2-, interleukin 2 (IL 2)-producing proliferative T cell clones when cultured with antigen and antigen-presenting cells (APC) is a sensitive measure of the state of activation of the cell. In general, the fine specificity of T cell activation was similar when activation was measured either by IFN-gamma production or by proliferation. In response to antigen and the correct Ia molecule, the T cell clones produced both high titered IFN-gamma and a strong proliferative response. However, IFN-gamma production and the degree of proliferation of the T cell clones differed at high antigen concentrations. As antigen concentration increased, the magnitude of proliferation became submaximal whereas the IFN-gamma response became maximal suggesting that IFN-gamma produced by the cells might act as an autoregulatory molecule inhibiting the proliferative response. Stimulating the T cell to divide via its IL 2 receptor by adding exogenous IL 2 produced high levels of proliferation but only low titers of IFN-gamma activity. In addition, irradiation of the clone eliminated the IFN-gamma release induced by IL 2 but did not affect the IFN-gamma release induced by antigen and Ia. Thus proliferation is not essential for IFN-gamma production and unlike antigen and Ia, IL 2 functions predominantly as a proliferative signal and not as a signal for factor release. Two T cell clones showed a dissociation of IFN-gamma production and proliferation. In one case, a clone that proliferated in response to both allogeneic and antigenic stimuli released IFN-gamma in response to antigen but failed to produce IFN-gamma in response to the allogeneic stimulus. A second clone that showed a strong proliferative response to pigeon cytochrome c but no proliferative response to a species variant of cytochrome c, tobacco hornworm moth (THWM) cytochrome c, produced IFN-gamma when stimulated with either of these antigens. Thus, the sensitivity of detecting activation of T cell clones as measured by the release of an individual lymphokine varies from one clone to another.  相似文献   

4.
The studies presented here investigated the relationship between T cell recognition of MHC-encoded products and non-MHC-linked Mls determinants. The first aspect addressed whether Mls-reactive T cells recognize Mls-encoded products alone or in association with MHC-encoded determinants. Initial studies used Mlsa-specific T cell clones that were generated by repeated stimulation of C57BL/6 or B10.A(5R) spleen cells with DBA/2 lymphoid cells. These clones recognized Mlsa on cells expressing MHC products of the H-2b, H-2d, and H-2k haplotypes, but not the H-2q haplotype. Thus, these cloned T cells were found to recognize Mlsa products in association with public but demonstrably polymorphic H-2 determinants. The question of whether T cell clones that were specific for self-H-2 determinants (autoreactive) or soluble antigen plus syngeneic H-2 (antigen-specific) could also be stimulated by Mlsa determinants was also addressed. A substantial proportion of the antigen-specific or autoreactive T cell clones tested were stimulated by Mlsa determinants. Furthermore, stimulation of these clones by Mlsa was H-2 restricted. The pattern of H-2-restricted recognition of Mlsa by these clones was not distinguishable from that observed in the Mlsa-specific T cell clones, nor was it influenced by the primary specificity or H-2 restriction pattern of a given clone. Although these findings provide a means of explaining the observation that Mls-reactive T cells exist at extremely high precursor frequencies, they also raise questions regarding the nature of the receptor structures which are used by a single T cell in the recognition of two or more apparently distinct stimuli.  相似文献   

5.
We examined the antigen recognition of the class II major histocompatibility complex (MHC) of 45 poly(glu60 ala30 tyr10) (GAT)-reactive T-cell clones isolated by limiting dilution cloning of a pool of in vivo-primed and in vitro-restimulated A.TL lymph-node T cells. Each clone expressed the Thy-1.2+, Lyt-1+, Lyt-2-, LFA-1+, Ia-, and H-2Dd+ cell-surface phenotype and exhibited strict specificity for GAT on syngeneic antigen-presenting cells (APCs). The monitoring of the proliferative responses of these clones in the presence or absence of GAT, using APCs from strains with 11 independent H-2 haplotypes, revealed several distinct specificity patterns: (i) most (31 of 45, 73%) T-cell clones recognized GAT in a self-I-Ak-restricted manner; (ii) other alloreactive clones (5 of 45, 11%) were stimulated to proliferate, irrespective of the presence of GAT, in response to allodeterminants expressed on H-2s, H-2d, H-2f or H-2u spleen cells; (iii) a third T-cell clone subset (4 of 45, 9%) was activated by GAT in the context of not only self-I-Ak but also nonself restriction Ia determinants; and (iv) three clones (7%) exhibited a triple specificity, i.e., they recognized GAT in the context of self and nonself Ia determinants and were alloreactive. One of the latter clones responded to GAT in an apparently non-MHC-restricted manner and recognized an I-Ab allodeterminant. These data provide direct evidence that the antigen-specific and alloreactive T-cell repertoires overlap and that the self-MHC restriction of GAT-specific T-cell responses is not absolute in A.TL mice.  相似文献   

6.
The diversity of T cell receptors specific for self MHC gene products   总被引:1,自引:0,他引:1  
Cytolytic and helper T cells exhibit, in addition to their specificity for foreign antigen, a restriction specificity for self MHC gene products. The present study was designed to assess the degree of diversity within the repertoire of receptors that are involved in T cell recognition of self MHC gene products. For this purpose, we generated a series of murine cytolytic T lymphocyte (CTL) clones specific for a hapten antigen and restricted to the self MHC gene product H-2Kb. An analysis of the hapten fine specificity of these clones by using hapten analogues revealed the presence of substantial diversity within the repertoire of CTL receptors specific for the hapten. The degree of diversity within the repertoire of self H-2 recognition structures on these clones was assessed by testing clones on panels of syngeneic, congenic H-2K disparate, and H-2Kb mutant target cells bearing varying amounts of antigen. A striking degree of heterogeneity in H-2K recognition was found among these H-2Kb restricted CTL. We estimate that there are probably a minimum of 65 different patterns of H-2K recognition among these clones. Our results suggest a high degree of diversity exists within the repertoire of self MHC recognition structures on antigen-specific T cells restricted to a single self MHC gene product.  相似文献   

7.
Self-Ia-reactive cloned T-cell lines, designated PK, were established by long-term culture of T cells from normal DBA/2 mice with irradiated syngeneic splenic adherent cells (SAC), rich in macrophages and dendritic cells. The cell lines were Thy 1+, Lyt 1+, Lyt 2-, produced IL-2 following stimulation with syngeneic spleen cells, and did not exhibit alloreactivity when screened against six different H-2 haplotypes. Of the five cloned PK cell lines tested, four were I-Ed restricted while one was I-Ad restricted as determined by genetic mapping and blocking studies carried out with monoclonal anti-Ia sera. Extensive specificity studies suggested that the PK cells reacted to syngeneic Ia molecules alone and not to foreign antigens such as fetal calf serum (FCS) used in the culture medium, in association with self-Ia. SAC pulsed with FCS or other protein antigens such as turkey gamma-globulin (TGG) were tested for their ability to induce proliferation of autoreactive T cells and other antigen-specific T cells using culture conditions consisting of serumless medium and interleukin 2 (IL-2). The data showed that the autoreactive T cells proliferated better in response to antigen-unpulsed SAC, while FCS-specific and TGG-specific cell lines, developed independently, proliferated only in response to FCS- or TGG-pulsed SAC, respectively, but not to antigen-unpulsed SAC. These results clearly distinguished the autoreactive T-cell clones from the antigen-specific T-cell clones. Preliminary studies carried out to investigate the functions of autoreactive T cells suggested that these cells helped in the in vitro differentiation of alloantigen-specific cytotoxic T lymphocytes (CTL) from CTL precursors obtained from the thymus and augmented syngeneic, allogeneic, and antigen-specific immune responses in vitro. The autoreactive T cells were also capable of inducing both proliferation and differentiation of antigen-specific populations of B cells in the absence of antigen. The present investigation suggests that autoreactive, non-antigen-reactive T cells can be cloned from normal, unimmunized mice and that such cell lines may provide a powerful tool for analyzing the role of the syngeneic mixed lymphocyte reaction in induction and maintenance of both T-and B-cell immune responses.  相似文献   

8.
We have studied the relationship between major histocompatibility complex (MHC)-restricted antigen recognition and alloreactivity by examining T cell receptor (TCR) alpha and beta gene expression in cytochrome c-specific, Ek alpha:Ek beta (Ek)-restricted helper T cell clones derived from B10.A mice. The clones could be segregated on the basis of four distinct alloreactivity patterns. Clones cross-reactive for three different allogeneic la molecules (As alpha:As beta [As], Ab alpha:Ab beta [Ab], Ek alpha: Eb beta [Eb]) expressed the same V alpha and V beta gene segments, generating the distinct alloreactive specificities via unique V alpha-J alpha and V beta-D beta-J beta joining events. Ek alpha:Es beta (Es)-alloreactive B10.A clones expressed the same V alpha, J alpha, and V beta segments as an Es-restricted, Ek-alloreactive, cytochrome c-specific, H-2-congenic B10.S(9R) clone. This homology between TCRs mediating allorecognition of la molecules and recognition of the same la molecules as restriction elements associated with nominal antigen suggests that MHC-restricted recognition and allorecognition represent differences in the affinity of the TCR-MHC molecule interaction.  相似文献   

9.
Human T cells, when activated by antigen or mitogen, express Ia antigens. We have examined the capacity of activated T cells to stimulate autologous and allogeneic T cells and their ability to present soluble antigen. Interleukin 2-dependent T-cell lines (TCL), free of accessory cells, were used for antigen-presenting cells. These activated T cells were potent stimulators in an autologous mixed lymphocyte reaction (AMLR), more so than autologous irradiated non-T mononuclear cells. Activated T cells were also able to stimulate proliferation of allogeneic T cells in the absence of any other accessory cells, and this stimulation was blocked by anti-Ia antibodies. Resting unstimulated T cells were unable to stimulate autologous or allogeneic responses. Thus, activated T cells were able to present self antigens and alloantigens. However, activated T cells could not present soluble antigens to autologous T cells or to antigen-specific TCL even if exogenous interleukin 1 was added to cultures. The ability of activated T cells to stimulate an AMLR in vitro may reflect an important immunologic amplification mechanism in vivo. The ability of activated T cells to present alloantigens but not soluble antigens suggests an inability to process antigen, and this may provide further insights into the complexities of antigen presentation.  相似文献   

10.
Recent studies indicate that when epidermal Langerhans' cells (LC) are cultured for 2 to 3 days they, in comparison to freshly prepared LC, exhibit markedly enhanced ability to stimulate T cell proliferative responses in oxidative mitogenesis and in the mixed epidermal-leukocyte reaction. In this study, we determined whether cultured LC enhance antigen-specific T cell responses, and whether such enhanced stimulatory capacity correlates with the level of Ia antigen expressed on LC. We used C3H/He (Iak) epidermal cells as stimulators and, as responder cells, both the trinitrophenyl-specific clones D8 and SE4, which were assayed for [3H]dThd incorporation, and the pigeon cytochrome c specific hybridoma 2C2, which was assayed for interleukin 2 production. Cultured LC induced 10 to 100 times greater proliferation or interleukin 2 production by responder cells than did freshly prepared LC. The intensity of I-Ak and I-Ek, expressed on cultured LC as assessed by immunofluorescence and flow cytometry, was found to be 10 to 36 times greater on a per cell basis than that on freshly prepared LC. Depletion of LC from fresh epidermal cell suspensions by anti-Iak and complement or treatment with 50 mJ/cm2 medium range ultraviolet light or cycloheximide before culture abrogated both the increase in Ia expression and antigen-specific clonal proliferation. The results suggest that when LC are removed from their usual epidermal milieu, they express increased amounts of Ia and become more potent stimulators of T cell responses.  相似文献   

11.
C57BL/10 T cells sensitized with TNBS-treated syngeneic cells and maintained in culture by repeated stimulations exhibit high cytolytic activity toward syngeneic TNBS-treated target cells with marked cross-reactivity on TNBS-treated target cells from mice of independent H-2 haplotypes (ten tested). The analysis of the reactivities of 48 T-cell clones derived by limiting dilution from such T-cell populations revealed three types of cytotoxic T-cell clones: (1) clones restricted by H-2Kb + TNP without cross-reaction on TNBS-treated or untreated target cells of other tested mouse haplotypes; (2) clones that lysed H-2b + TNP and also TNBS-treated target cells from not more than one, two or three different H-2 haplotypes; (3) clones that lysed untreated H-2k target cells. No T-cell clone was found to exhibit the wide pattern of cross-reactivity on any TNBS-treated mouse cell, characteristic of the original T-cell populations, indicating that these were composed of individual T-cell clones specific for TNP + private or for TNP + distinct public H-2 determinants. Correlation with described serological public H-2 specificities was possible for some cytotoxic T-cell clone reactivity, but not for others. The general pattern of T-cell reactivity as revealed by clonal analysis in this study, as well as in published work, includes cross-reactions between self H-2a + X and allogeneic H-2n + X, between self H-2a + X and unmodified allogeneic H-2n, or between allogeneic H-2n and allogeneic H-2m + X, and is consistent with the hypothesis that MHC-class restriction is the main rule in T-cell recognition.Abbreviations used in this paper CTL cytotoxic T lymphocyte - TNBS trinitrobenzene sulfonate - TNP trinitrophenyl - TNCB trinitrochlorobenzene - H-2 mouse major histocompatibility complex - IL-2 interleukin 2 - Con A concanavalin A - FCS fetal calf serum - SCA IL-2 containing supernatant - LPS E. coli lipopolysaccharide - X a non-H-2 conventional antigen  相似文献   

12.
A self-reactive T cell hybridoma that secretes IL-2 in response to H-2d haplotype cells resulted from a fusion of BALB/cBy lymph node cells with the AKR thymoma BW5147. The lymph node cells used had been enriched for cells reactive to (TG)-A--L, but neither this antigen nor fetal calf serum were required for stimulation of the hybridoma designated 3DT52.5. The gene product responsible for stimulation mapped to the H-2D region. Allogeneic cells of the b, f, k, q, and s haplotypes failed to stimulate. Not all H-2d haplotype cells were effective stimulators of 3DT52.5. Peritoneal cells and splenic B cells were much more stimulatory than splenic T cells. Most tumor cell lines of H-2d derivation and of B cell or macrophage/monocyte lineage were stimulatory, whereas H-2d T cell lines were not. The capacity to stimulate 3DT52.5 did not correlate with the ability to stimulate I region-restricted hybridomas, or with the ability to be induced to stimulate such hybridomas. Stimulatory cell lines did not apparently produce a soluble factor required for stimulation, and negative cell lines were not inhibitory. The monoclonal antibody 27-11-13, which reacts with H-2D of the b, d, and q haplotypes, inhibited stimulation of 3DT52.5 but did not inhibit stimulation of the sibling hybridoma 3DT18.11, which responds to (TG)-A--L plus I-Ad. Conversely, the monoclonal anti-I-Ad antibody MK-D6 inhibited stimulation of 3DT18.11 but not 3DT52.5. Although it is clear that 3DT52.5 recognizes a class I antigen coded for in the H-2D region, the precise molecular nature of the antigen is unknown. The structure of the antigen receptor on this hybridoma may prove to be of interest when it can be compared with receptors found on T cell hybridomas restricted by class II histocompatibility antigens.  相似文献   

13.
The activation of proliferative T lymphocytes normally involves the simultaneous recognition of a particular foreign antigen and a particular Ia molecule on the surface of antigen-presenting cells, the phenomenon of major histocompatibility complex (MHC) restriction. An analysis of T cell clones specific for pigeon cytochrome c, from B10.A and B10.S(9R) strains of mice, revealed the unusual finding that several of the clones could respond to antigen in association with Ia molecules from either strain. Using these cross-reactive clones, we performed experiments which demonstrated that both the Ia molecule and the T cell receptor contribute to the specificity of antigen recognition; however, MHC-linked low responsiveness to tuna cytochrome c (an immune response gene defect) could not be attributed solely to the efficacy with which the Ia molecules associated with the antigen. These results imply that antigen and Ia molecules are not recognized independently, but must interact at least during the process of T cell activation.  相似文献   

14.
Successful antigen presentation by xenogeneic human antigen-presenting cells (APC) to stimulate the proliferation of antigen-specific, keyhole limpet hemocyanin (KLH)-specific, ovalbumin (OVA)-specific, and purified protein derivative of Mycobacterium tuberculosis (PPD)-specific murine T cells was observed. Evidence indicating a direct cell interaction between antigen-specific murine T cells and xenogeneic human APC was given by experiments using antigen-specific murine T cell clones. The OVA-specific B10.S(9R) T cell line (9-0-A1) and PPD-specific B10.A(4R) T cell line (4-P-1) were stimulated by both xenogeneic human APC and murine APC from syngeneic or I-A compatible strains, while the PPD-specific human T cell line (Y-P-5) was stimulated by autologous human APC but not by murine APC. Anti-HLA-DR monoclonal antibodies (MoAb) blocked the xenogeneic human APC-antigen-specific murine T cell clone interaction. Thus, human xenogeneic APC can stimulate antigen-specific murine T cells through HLA-DR molecules in the same manner as syngeneic murine APC do through Ia molecules coded for by the I region of the H-2 complex, while murine APC failed to present antigen to stimulate human antigen-specific T cells.  相似文献   

15.
The in vivo activation of T cells by a variety of antigens can be inhibited by the administration of anti-I-A antibodies (Ab) at the time of antigen priming. This inhibition can partially be explained by the temporary loss of Ia molecules from Ia-bearing antigen-presenting cells (APC) in the spleen. In this study, the effects of i.p. injected monoclonal Ab specific for I-A glycoproteins of different H-2 haplotypes on Ia antigen expression and APC function of spleen cells and epidermal Langerhans cells were compared. It was found that anti-I-A Ab quickly bound to both spleen cell and Langerhans cell Ia antigens. Although spleen cell Ia antigens were modulated and thus temporarily disappeared, Ia antigen expression by epidermal Langerhans cells was not modulated. In functional studies, the capacity of spleen cells and epidermal cells from anti-I-A Ab treated vs control animals to function as APC for antigen-specific, I-A- or I-E-restricted T cell clones was tested. A single injection of anti-I-A Ab completely abolished the APC function of spleen cells as shown in several inbred mouse strains, F1 animals, and with the use of several different Ab and T cell clones. In contrast, Langerhans cell-dependent APC function of epidermal cells remained completely unaltered. Even multiple injections of high doses of Ab never caused any inhibition of Langerhans cell function. Experiments with anti-I-Ak or anti-I-Ad Ab in an (H-2k X H-2d)F1 animal showed abrogation of APC function of spleen cells, but again not of Langerhans cells. Thus in vivo anti-I-A Ab administration appears to differentially affect Ia antigen expression and APC function from spleen and epidermis: Ia antigens are modulated from spleen cells but not from epidermis, and APC function disappears in the spleen but not in the epidermis. The abrogation of splenic but not of Langerhans cell APC function with anti-I-A Ab will facilitate the dissection of the relative contributions of Langerhans cells as compared with other APC in the generation of cutaneous immune responses.  相似文献   

16.
In vitro cultivation of primed T cells with antigen resulted in the induction of a regulatory T cell that nonspecifically augmented the in vitro antibody responses of H-2-compatible T and B cells. This T cell, designated as the augmenting T cell (Ta), was unable to help B cells by itself but enhanced the antibody response of B cells to several multitudes only when conventional helper T (Th) cells or cloned Th cells from the same H-2 haplotype coexisted. Ta was radioresistant and belonged to Lyt-1+, 2-, L3T4+, I-J- T cell lineage. Ta exhibited interesting H-2-restricted activities: when primed T cells from (A X B) F1 were cultured with the antigen in the presence of parent A type antigen-presenting cells, the induced Ta was able to augment the antibody response of (A x B) F1 B cells in the presence of Th cells from F1----A but not from F1----B radiation bone marrow chimeras. This indicates that the induction of Ta in an F1 T cell population is dependent on the H-2 haplotype of antigen-presenting cells during in vitro cultivation. The restriction specificity of the established Ta is, however, not directed to the class II antigen itself but to the restriction specificity of Th cells that recognize class II antigen. In support of this is the fact that the elimination of A-restricted Th cells during cultivation by treatment with anti-I-J mAb, which is known to react with H-2-restricted Th cells, resulted in failure of induction of Ta cells having the augmenting activity for the A-restricted response.  相似文献   

17.
The target cells for H-2b T lymphocytes mediating a negative allogeneic effect in vitro were analyzed by using carrier-specific helper T cell lines of H-2b, H-2d, or F1 origin and hapten-primed T-depleted spleen cells also expressing one or both of these haplotypes. The helper T cell lines were shown to be carrier specific and H-2b or H-2d restricted. Most importantly, the lines derived from H-2b homozygous mice were devoid of alloreactivity against H-2d and vice versa. Titration of naive H-2b T lymphocytes to the indicator cultures resulted in suppression of the secondary anti-DNP response of the indicator cells whenever the B cells expressed H-2d antigens. The lack of suppression observed in mixtures in which only the helper T cell lines expressed H-2d antigens was not reversed by the increased addition of naive H-2bxd cells, indicating that an insufficient amount of H-2d antigens present on the low number of helper T cells used did not account for this finding. Moreover, the polyclonal plaque-forming cell responses of F1 spleen cells to LPS were also suppressed by naive parental T cells. From these findings it is concluded that the suppressor T cells directly recognize and inhibit allogeneic B cells without the involvement of helper T cells. In addition, it was shown that the suppression of secondary anti-hapten responses by naive allogeneic T cells is blocked by monoclonal anti-Lyt-2 antibody added at the onset of culture. Addition late in culture had no effect, pointing to a functional role of the Lyt-2-bearing structure at an early stage of the suppressive events resulting in the negative allogeneic effect.  相似文献   

18.
Proliferation of antigen-specific T-cell populations was induced in cultures stimulated with antigen and a suitable source of antigen-presenting cells. Soluble (keyhole limpet hemocyanin) and particulate (horse red blood cells) antigens were presented by irradiated spleen cells and by a variety of B-lymphoma-cell lines, providing support for antigen-specific H-2-restricted T-cell responses. A marked heterogeneity was demonstrated, however, in the capacity of T-cell lines to proliferate in response to antigen presented by the B-lymphoma cells. T-cell populations were prepared from the lymph nodes of antigen-primed mice and restimulated in vitro in the presence of antigen and irradiated spleen cells. During the first six in vitro restimulations, these T-cell populations maintained the capacity to respond to antigen presented either by irradiated spleen cells or by B-lymphoma cells. Continued growth of these T-cell populations, again in the presence of antigen and irradiated spleen cells, resulted in the generation of T-cell lines which had lost the ability to respond to antigen presented by B-lymphoma cells. These lines however, fully retained the capacity to proliferate in the presence of antigen and irradiated spleen cells. T-cell clones derived from one of these lines were also unable to respond to antigen presented by B-lymphoma cells but again proliferated in the presence of antigen and irradiated spleen cells. Supernatants containing high levels of IL-1, IL-2, or IL-3 activity failed to reconstituted the antigen-specific response of T-cell lines which had lost the capacity to respond to antigen presented by B-lymphoma cells. Furthermore, titrated numbers of irradiated spleen cells, while having the capacity to support T-cell proliferation themselves, failed to synergize with B-lymphoma cells in the support of antigen-specific T-cell proliferation. Thus we have defined populations of antigen-specific, H-2-restricted T cells which do not recognize antigen presented by B-lymphoma cells and can therefore discriminate between different antigen-presenting cell types.  相似文献   

19.
Monospecific T cell clones have been proven to be powerful tools for the characterization of T cell recognition in many Ag-specific as well as allo-specific T cell responses. In this report, in order to elucidate the mechanism of T cell recognition of minor stimulating locus Ag (Mlsc) determinants, Mlsc-specific cloned T cells were employed together with primary T cell responses to clarify the role of MHC-gene products in Mlsc-specific T cell recognition. The results indicated that T cells recognize Mlsc determinants in conjunction with I-region MHC gene products. Moreover, certain MHC haplotypes (e.g., H-2a and H-2k) appear to function efficiently in the "presentation" of Mlsc, whereas other haplotypes (e.g., H-2b and H-2q) function poorly if at all in presenting Mlsc. Experiments with the use of stimulators derived from F1 hybrids between the low stimulatory H-2b, Mlsc strain, C3H.SW, and a panel of Mlsb, H-2-different or intra-H-2 recombinant strains strongly suggested that expression of E alpha E beta molecules on stimulators plays a critical role for Mlsc stimulation. The functional importance of the E alpha E beta product in Mlsc recognition was further demonstrated by the ability of anti-E alpha monoclonal antibody to inhibit the response of cloned Mlsc-specific T cells. Inhibition of the same Mlsc-specific response by anti-A beta k antibody suggests that the A beta product may also play a role in T cell responses to Mlsc.  相似文献   

20.
Activation of murine B lymphocytes in a splenocyte stimulator population with affinity-purified goat anti-mouse IgD (G alpha M delta) antibody was previously shown by this laboratory to enhance the presentation of strongly stimulatory major histocompatibility complex (MHC) and minor lymphocyte-stimulating (Mlsa,d) determinants in a primary mixed lymphocyte reaction. In the present study, the G alpha M delta treatment of murine splenocytes was employed to enhance the detection of the weakly stimulatory non-MHC Mlsc determinant in order to study the role the MHC might play as a restricting element for the recognition of these minor antigens in a primary mixed lymphocyte reaction. Indeed, enhanced T cell proliferation to Mlsc determinants presented on G alpha M delta-treated splenocytes was observed when the responder and activated H-2-compatible stimulator cell shared certain MHC haplotypes. High responsiveness was associated with the H-2a,k,j,p haplotypes, intermediate responsiveness was associated with the H-2f,g haplotypes and low responsiveness was associated with the H-2b,s haplotypes. (Low X high responder)F1 T cells preferentially responded to the Mlsc determinants presented on G alpha M delta-treated stimulator cells of the F1 or parental high responder H-2 haplotype. When mitomycin C instead of irradiation was used to inactivate normal (non-IgD-treated) splenocytes, a similar preferential response of T cells to Mlsc determinants presented on stimulator cells of a high responder H-2 haplotype was also observed. The inability of G alpha M delta-treated splenocytes of the low responder haplotype to elicit substantial levels of T cell proliferation across an Mlsc difference could not be attributed to the failure of these stimulator cells to become activated by the anti-Ig antibody. In addition, co-culture experiments could not identify the poor T cell response to Mlsc determinants presented on certain MHC haplotypes as being caused by the induction of nonspecific suppressor cells. Presentation of Mlsc determinants caused by transgene product complementation was detectable in F1 mice derived by crossing one parent that had the Mlsc non-MHC genes and a poorly permissive H-2 haplotype with a parent that expressed a permissive H-2 haplotype but lacked the Mlsc non-MHC genes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号