首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural diversity of bacterial and fungal lectins has been highlighted during the past few years. Some of the new structures reproduce folds previously observed in plants or mammals, but many constitute new folds that have never been observed before, either at all or not with a lectin function, testifying to the increasing diversity. The novelty of the new structures is greater at the level of the sugar-binding sites, with some bacterial lectins displaying unusually high affinity for oligosaccharides and even monosaccharides. Analysis of the thermodynamic contributions to the energy of binding gives clues to the strategies used by bacteria to recognise and attach to their host.  相似文献   

2.
Lectins from two varieties (PG-3 and LFP-48) of pea have been purified by affinity chromatography on Sephadex G-50. The specific activity increased by 23 and 25 folds, respectively. These lectins from both the varieties were found to be specific for mannose. The purified fluorescein isothiocyanate (FITC)-labelled lectins showed binding reaction with homologous as well as heterologous strains of Rhizobium spp. The results revealed that pea lectins are not highly specific to their respective rhizobia. Moreover, these lectins showed a greater stimulatory effect on homologous Rhizobium leguminosarum strains.  相似文献   

3.
The beta-prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, beta-prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the beta-prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a beta-prism I fold lectin, griffthsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of beta-prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion.It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the beta-prism II fold, is related to the role of plant lectins in defence.  相似文献   

4.
Lectins from two varieties (PG-3 and LFP-48) of pea have been purified by affinity chromatography on Sephadex G-50. The specific activity increased by 23 and 25 folds, respectively. These lectins from both the varieties were found to be specific for mannose. The purified fluorescein isothiocyanate (FITC) – labelled lectins showed binding reaction with homologous as well as heterologous strains of Rhizobium spp. The results revealed that pea lectins are not highly specific to their respective rhizobia. Moreover, these lectins showed a greater stimulatory effect on homologous Rhizobium leguminosarum strains.  相似文献   

5.
Detection of genes for putative receptor-like protein kinases, which contain an extracellular domain related to leguminous lectins, in plant genomes inspired the hypothesis that this part acts as sensor. Initial support for this concept came from proof for protein kinase activity. The next step, focusing on the protein of lombardy poplar (Populus nigra var. italica), is scrutiny for lectin activity. Consequently, we first pinpointed sets of high-scoring sequence pairs by extensive databank search. The calculations resulted in P-values in the range from 10(-14) to 10(-18) exclusively for leguminous lectins, the Pterocarpus angolensis agglutinin being front runner with P=3 x 10(-18) and thus most suitable template for modeling. The superimposition of the two folds gave notable similarity in the region responsible for binding carbohydrate and Ca(2+)/Mn(2+)-ions. Binding activity toward carbohydrates was detected by assaying a panel of (neo)glycoproteins as polyvalent probes, especially for alpha-l-rhamnose and glycans of asialofetuin. It was strictly dependent on Ca(2+)-ions, enhanced by Mn(2+)-ions and reached a K(D)-value of 34.3 nM for the neoglycoprotein with rhamnose as ligand. These results give further research direction to define physiological ligands, plant/bacterial rhamnose-containing saccharides and rhamnose-mimetic glycans or peptides being potential candidates.  相似文献   

6.
W Min  A J Dunn    D H Jones 《The EMBO journal》1992,11(4):1303-1307
The complex post-translational processing of concanavalin A (Con A) in maturing jackbeans is unique because the non-glycosylated mature active protein is circularly permuted in primary sequence relative to its own inactive precursor (glycosylated pro-Con A) and to other legume lectins. We show here that non-glycosylated pro-Con A expressed in bacteria from recombinant cDNA (rec-pro-Con A) folds in vivo and in vitro to a stable form which is active without further processing. N-glycosylation alone must therefore be sufficient to inactivate pro-Con A--a novel role for glycosylation in regulating activity during protein maturation.  相似文献   

7.
GafD in Escherichia coli G (F17) fimbriae is associated with diarrheal disease, and the structure of the ligand-binding domain, GafD1-178, has been determined at 1.7A resolution in the presence of the receptor sugar N-acetyl-D-glucosamine. The overall fold is a beta-barrel jelly-roll fold. The ligand-binding site was identified and localized to the side of the molecule. Receptor binding is mediated by side-chain as well main-chain interactions. Ala43-Asn44, Ser116-Thr117 form the sugar acetamide specificity pocket, while Asp88 confers tight binding and Trp109 appears to position the ligand. There is a disulfide bond that rigidifies the acetamide specificity pocket. The three fimbrial lectins, GafD, FimH and PapG share similar beta-barrel folds but display different ligand-binding regions and disulfide-bond patterns. We suggest an evolutionary path for the evolution of the very diverse fimbrial lectins from a common ancestral fold.  相似文献   

8.
The edible bird's nest extract from Collocalia spp. was found to contain a glycoprotein which could potentiate mitogenic response of human peripheral blood monocytes to stimulation with Concanavalin A or Phytohemagglutinin A. The potentiating effect of the extract was most marked at suboptimal mitogenic concentrations of these lectins, decreasing the 50% optimal concentration of Con A and PHA by 6- and 2.5- folds respectively. The potentiating effect was exerted early during the first 10 hours following stimulation with Con A. This potentiation activity was not dialysable, but it was stable to limited digestion with trypsin, alkaline pH and extraction with ether.  相似文献   

9.
The β-prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, β-prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the β-prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a β-prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of β-prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the β-prism II fold, is related to the role of plant lectins in defence.  相似文献   

10.
Infection by pathogens is generally initiated by the specific recognition of host epithelia surfaces and subsequent adhesion is essential for invasion. In their infection strategy, microorganisms often use sugar-binding proteins, that is lectins and adhesins, to recognize and bind to host glycoconjugates where sialylated and fucosylated oligosaccharides are the major targets. The lectin/glycoconjugate interactions are characterized by their high specificity and most of the time by multivalency to generate higher affinity of binding. Recent crystal structures of viral, bacterial, and parasite receptors in complex with human histo-blood group epitopes or sialylated derivatives reveal new folds and novel sugar-binding modes. They illustrate the tight specificity between tissue glycosylation and lectins.  相似文献   

11.
Increased cell surface expression of the Thomsen-Friedenreich antigen (TF antigen, Galbeta1-3GalNAcalpha-) is a common feature in malignant and pre-malignant epithelia. Our previous studies have shown that dietary TF-binding lectins from peanut (Arachis hypogea) and edible mushroom (Agaricus bisporus) produce marked but different effects on human intestinal epithelial cell proliferation. This study investigates the proliferative effects of the other two known dietary TF-binding lectins: jacalin (Artocarpus integrifolia, JAC) and amaranth lectin (Amaranthus caudatus, ACA). JAC produced dose-dependent and non-cytotoxic inhibition of proliferation in HT29 human colon cancer cells with maximal effects of 46 +/- 4% at 20 microg/ml, whereas ACA produced dose-dependent stimulation of proliferation with maximal effects of 22 +/- 3% at 20 microg/ml when assessed both by incorporation of [3H]thymidine into DNA and by cell counting. The lectin-mediated effects were inhibitable by the presence of appropriate Galbeta1-3GalNAc-expressing glycoproteins but differences existed between JAC and ACA in their patterns of inhibition by such substances. Ligand binding equilibrium studies using iodinated lectins revealed different Kd of the two lectins for HT29 cell surface glycoproteins. Lectin blots of cell membrane extracts showed different binding patterns in all the four TF-binding lectins. These results provide further evidence that dietary TF-binding lectins can have marked effects on the proliferation of human malignant gastro-intestinal epithelial cells and hence may play a role in intestinal cancer development, and also show that the biological effects of dietary lectins cannot be predicted solely from their carbohydrate binding properties.  相似文献   

12.
Lectins are a structurally diverse group of carbohydrate recognizing proteins that are involved in various biological processes and exhibit substantial structural diversity. Interestingly, in spite of having varied carbohydrate-binding specificities, they show modest variation in their secondary and tertiary structure. However, very similar tertiary folds give rise to a range of quaternary structures by simply varying the mutual orientations of the subunits involved. The variety in the quaternary structure generates multivalency in sugar specificities among lectins along with the requisite surface topology to allow for unobstructed recognition events.  相似文献   

13.
Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.  相似文献   

14.
Interactions between members of the genus Listeria and lectins are described. L. monocytogenes was shown to be heterogenous with respect to agglutination by lectins. L. monocytogenes serotype 4b had a pattern of lectin binding distinct from the other listeriae. Titration of the listeriae with lectins proved to be useful in further distinguishing serotype 4b. The results show that lectins may provide useful probes as diagnostic reagents for listeriae.  相似文献   

15.
An innovative bioinformatic method has been designed and implemented to detect similar three-dimensional (3D) sites in proteins. This approach allows the comparison of protein structures or substructures and detects local spatial similarities: this method is completely independent from the amino acid sequence and from the backbone structure. In contrast to already existing tools, the basis for this method is a representation of the protein structure by a set of stereochemical groups that are defined independently from the notion of amino acid. An efficient heuristic for finding similarities that uses graphs of triangles of chemical groups to represent the protein structures has been developed. The implementation of this heuristic constitutes a software named SuMo (Surfing the Molecules), which allows the dynamic definition of chemical groups, the selection of sites in the proteins, and the management and screening of databases. To show the relevance of this approach, we focused on two extreme examples illustrating convergent and divergent evolution. In two unrelated serine proteases, SuMo detects one common site, which corresponds to the catalytic triad. In the legume lectins family composed of >100 structures that share similar sequences and folds but may have lost their ability to bind a carbohydrate molecule, SuMo discriminates between functional and non-functional lectins with a selectivity of 96%. The time needed for searching a given site in a protein structure is typically 0.1 s on a PIII 800MHz/Linux computer; thus, in further studies, SuMo will be used to screen the PDB.  相似文献   

16.
The direct interaction of mannose-specific plant lectins with gp120 of HIV-1 was studied by surface plasmon resonance. Inhibition experiments indicated that exposed high mannose type glycans play a key role in the interaction. Most of the lectins specifically accommodate outer alpha1,2-, alpha1,3-, or alpha1,6-linked di- or trimannosides, and especially legume lectins, also interact with the trimannoside core of the complex type glycans. The unexpected affinity of some lectins towards gp120 presumably results from conformational differences in their binding sites. These results demonstrate that mannose-specific plant lectins are powerful tools to study the accessibility and elucidate the function of the gp120 glycans in the recognition and infection of the host cells by HIV-1.  相似文献   

17.
While defining and elaborating the approaches to examination of the interaction between C-mannosylated tryptophan, recently discovered in the laboratory of Dr. Jan Hofsteenge, and Man/Glc specific lectins the unexpected results were obtained. Some animal origin mannosyl-containing RNases (as was expected) as well as analogous but nonglycosylated recombinant proteins expressed in E. coli (a negative control) were recognized by the mentioned lectins. Protein-protein interactions between lectins and expressed in E. coli nonglycosylated RNases are supposed and require further investigations.  相似文献   

18.
Plant lectins, a group of highly diverse carbohydrate‐binding proteins of non‐immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In this review, we provide a brief outline of structures of some representative plant lectins such as concanavalin A, Polygonatum cyrtonema lectin and mistletoe lectins. These can target autophagy by modulating BNIP‐3, ROS‐p38‐p53, Ras‐Raf and PI3KCI‐Akt pathways, as well as Beclin‐1, in many types of cancer cells. In addition, we further discuss how plant lectins are able to kill cancer cells by modulating autophagic death, for therapeutic purposes. Together, these findings provide a comprehensive perspective concerning plant lectins as promising new anti‐tumour drugs, with respect to autophagic cell death in future cancer therapeutics.  相似文献   

19.
The seeds of winged bean, Psophocarpus tetragonolobus(L.)DC, contain two distinct groups of lectins characterized by different erythrocyte hemagglutinating specificities and isoelectric points. Three acidic lectins (I, II, and III) (pI approximately 5.5) were purified to apparent homogeneity by chromatography on Ultrogel AcA44 and SP-Sephadex C-25. These lectins are glycoproteins with relative molecular mass of 54,000. The total carbohydrate content of the acidic lectins was 7% and was comprised of mannose, N-acetylglucosamine, fucose, and xylose in amounts corresponding to 9.2, 4.8, 1.6, and 7.0 mol/54,000 g, respectively. Electrophoresis in dodecyl sulfate, in the presence and absence of 2-mercaptoethanol, gave a single subunit of apparent relative molecular mass 30-32,000, somewhat higher than expected from the native relative molecular mass. On isoelectric focusing in 8 M urea the subunits of the acidic lectins did not show any significant charge heterogeneity as found for the winged bean basic lectins. The acidic lectins have very similar amino acid compositions. They contain essentially no half-cystine, 1-2 methionine residues, and are rich in acidic and hydroxy amino acids. The amino-terminal sequences of lectins II and III were identical while the amino-terminal sequence of lectin I contained five differences in the first 25 residues; the acidic lectins showed extensive sequence homology with the winged bean basic lectins, the other one-chain subunit lectins and the beta subunit of the two-chain subunit legume lectins. The acidic lectins agglutinated trypsinized human (type A, B, AB, and O) erythrocytes but not trypsinized rabbit erythrocytes. They were inhibited by various D-galactose derivatives and D-galactose-containing disaccharides and trisaccharides. N-Acetylgalactosamine was the best inhibitor, and the specificity appears to be directed to beta-D-galactosides. However, compared with winged bean basic lectins and soybean lectin, the winged bean acidic lectins show a low affinity for the inhibitory sugars.  相似文献   

20.
J. F. Manen  A. Pusztai 《Planta》1982,155(4):328-334
Antibodies against pure E4- and L4-lectins from the seeds of Phaseolus vulgaris L. raised in rabbits were made monospecific by immunoaffinity chromatography on E4- or L4-lectin Sepharose 4B columns. Localisation of lectins in bean seeds was investigated by indirect immunofluorescence and by electron microscopy on sections stained with colloidal gold particles coated with monospecific anti-E4- and anti-L4-IgG. In parenchyma cells from the cotyledons both E- and L-type lectins were found inside the protein bodies. Apparently the matrix of all protein bodies contained both types of lectins. On the other hand in vascular and in axis cells the two types of lectins were localised in the cytoplasm, outside the protein bodies. Thus these findings suggest different roles for the lectins: in cotyledons this may be a specific form of N storage, while in vascular and axis cells lectins may have a more direct metabolic part to play.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号