首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species Invasiveness in Biological Invasions: A Modelling Approach   总被引:3,自引:0,他引:3  
The study of invasiveness, the traits that enable a species to invade a habitat, and invasibility, the habitat characteristics that determine its susceptibility to the establishment and spread of an invasive species, provide a useful conceptual framework to formulate the biological invasion problem in a modelling context. Another important aspect is the complex interaction emerging among the invader species, the noninvader species already present in the habitat, and the habitat itself. Following a modelling approach to the biological invasion problem, we present a spatially explicit cellular automaton model (Interacting Multiple Cellular Automata (IMCA)). We use field parameters from the invader Gleditsia triacanthos and the native Lithraea ternifolia in montane forests of central Argentina as a case study to compare outputs and performance of different models. We use field parameters from another invader, Ligustrum lucidum, and the native Fagara coco from the same system to run the cellular automaton model. We compare model predictions with invasion values from aerial photographs. We discuss in detail the importance of factors affecting species invasiveness, and give some insights into habitat invasibility and the role of interactions between them. Finally, we discuss the relevance of mathematical modelling for studying and predicting biological invasions. The IMCA model provided a suitable context for integrating invasiveness, invasibility, and the interactions. In the invasion system studied, the presence of an invader's juvenile bank not only accelerated the rate of invasion but was essential to ensure invasion. Using the IMCA model, we were able to determine that not only adult survival but particularly longevity of the native species influenced the spread velocity of the invader, at least when a juvenile bank is present. Other factors determining velocity of invasion detected by the IMCA model were seed dispersal distance and age of reproductive maturity. We derived relationships between species' adult survival, fecundity and longevity of both theoretical and applied relevance for biological invasions. Invasion velocities calculated from the aerial photographs agreed well with predictions of the IMCA model.  相似文献   

2.
Colonization is of longstanding interest in theoretical ecology and biogeography, and in the management of weeds and other invasive species, including insect pests and emerging infectious diseases. Due to accelerating invasion rates and widespread economic costs and environmental damages caused by invasive species, colonization theory has lately become a matter of considerable interest. Here we review the concept of propagule pressure to inquire if colonization theory might provide quantitative tools for risk assessment of biological invasions. By formalizing the concept of propagule pressure in terms of stochastic differential equation models of population growth, we seek a synthesis of invasion biology and theoretical population biology. We focus on two components of propagule pressure that affect the chance of invasion: (1) the number of individuals initially introduced, and (2) the rate of subsequent immigration. We also examine how Allee effects, which are expected to be common in newly introduced populations, may inhibit establishment of introduced propagules. We find that the establishment curve (i.e., the chance of invasion as a function of initial population size), can take a variety of shapes depending on immigration rate, carrying capacity, and the severity of Allee effects. Additionally, Allee effects can cause the stationary distribution of population sizes to be bimodal, which we suggest is a possible explanation for time lags commonly observed between the detection of an introduced population and widespread invasion of the landscape.  相似文献   

3.
4.
The human mediation of biological invasions is still an underestimated phenomenon. This paper attempts to show that introductions on varying spatial scales may strongly foster invasions throughout the whole invasion process. As shown by data from central Europe, invasions frequently result from an interplay of biological and anthropogenic mechanisms. The latter, however, cannot be explained nor predicted by ecological rules. This may be an important reason for the limited predictability of invasions. Initial introductions from a donor to a new range are here distinguished from following secondary releases within the new range. The rate of naturalisation is higher in deliberately introduced plants as compared to accidental introductions. Due to higher numbers of accidental introductions, such species contribute significantly to the pool of naturalised species. Secondary releases of alien species are frequently made over long periods subsequent to the initial introduction. They may mimic demographic and dispersal processes that lead to population growth and range expansion. They also offer a pathway to overcome spatial isolation in species whose propagules are not naturally moved long distances. This even holds for most of Germany's noxious alien plant species. Secondary releases may thus promote invasions even beyond the threshold of naturalisation. In consequence, attempts at prevention should focus on secondary releases as well as on initial introductions. In the last section of the paper, the final invasion stage subsequent to naturalisation is shown as a multi-scale phenomenon. In consequence, the classification of a species as 'invasive' depends on the perspective chosen. Using different biologically or anthropocentrically based approaches leads to sub-sets of alien species that overlap only partially. In conclusion, the term `invasive' should preferably be used in a broader sense to describe the entire invasion process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Biological invaders can have dramatic effects on the environment and the economy. To most effectively manage these invaders, we should consider entire pathways, because multiple species are dispersed through the same vectors. In this paper, we use production-constrained gravity models to describe movement of recreational boaters between lakes – potentially the most important pathway of overland dispersal for many aquatic organisms. These models are advantageous because they require relatively easily acquired data, hence are relatively easy to build. We compare linear and non-linear gravity models and show that, despite their simplicity, they are able to capture important characteristics of the recreational boater pathway. To assess our model, we compared observed data based on creel surveys and mailed surveys of recreation boaters to the model output. Specifically, we evaluate four metrics of pathway characteristics: boater traffic to individual lakes, distances traveled to reach these lakes, Great Lakes usage and movement from the Great Lakes to inland waters. These factors will influence the propagule pressure (hence the probability of establishment of invasive populations) and the rate of spread across a landscape. The Great Lakes are of particular importance because they are a major entry point of non-indigenous species from other continents, hence will act as the origin for further spread across states. The non-linear model had the best fit between model output and empirical observations with r2 =0.80, r2 =0.35, r2 =0.57, and r2 =0.36 for the four metrics, respectively. For the distances traveled to individual lakes, r2 improved from 0.35 to 0.76 after removal of an outlier. Our results suggest that we were able to capture distances traveled to most but not all lakes. Thus, we demonstrate that production-constrained gravity models will be generally useful for modeling invasion pathways between non-contiguous locations.  相似文献   

6.
7.
8.
This paper provides a review of the first national inventory of non-indigenous species in Austria. In summary, 1110 vascular plant species (27 of the entire flora), 83 mycetes and at least 500 animal species (approximately 1 of the entire fauna) were documented for Austria, which are introduced intentionally or unintentionally by humans after 1492 and reported from the wild. About 25 of non-indigenous vascular plant species have become naturalized. Most non-indigenous vascular plants are native to the Palaearctic region (55%; with 33% originating from the Mediterranean subregion) and North America (20%). More than 90% of non-indigenous plant species are confined to naturally and anthropogenically disturbed (ruderal, urban, arable land, and riverine) habitats. Aquatic ecosystems are more affected and vulnerable to changes in their animal species composition. The current data demonstrate that non-indigenous species continue to invade and disperse and it also emphasize the necessity and responsibility to develop scientific strategies to minimize the impact of biological invasions and to raise public awareness of the problem.  相似文献   

9.
外来种入侵的过程、机理和预测   总被引:76,自引:8,他引:76  
生物入侵是指某种生物从原来的分布区域扩展到一个新的(通常也是遥远的)地区,在新的区域里,其后代可以繁殖、扩散并持续维持下去,生物入侵成功的原因,即与入侵者本身的生物学,生态学特征有关,也与群落的脆弱性有关,入侵者可能较本地种的竞争能力强,更适应当地的环境,有的入侵者还可以改变环境,使之对已有利,而不利于本地种。缺乏天敌制约。群落的稳定性低和异常的环境扰动往往导致生物入侵,生物入侵的预测包括哪一种外来种会变成入侵种?哪些生态系统区域会被入侵?影响程度如何?入侵种的扩散态势如何等内容,对有关的理论和模型作了评介。  相似文献   

10.
  总被引:8,自引:0,他引:8  
The use of simple terms to articulate ecological concepts can confuse ideological debates and undermine management efforts. This problem is particularly acute in studies of nonindigenous species, which alternatively have been called ‘exotic’, ‘introduced’, ‘invasive’ and ‘naturalised’, among others. Attempts to redefine commonly used terminology have proven difficult because authors are often partial to particular definitions. In an attempt to form a consensus on invasion terminology, we synthesize an invasional framework based on current models that break the invasion process into a series of consecutive, obligatory stages. Unlike previous efforts, we propose a neutral terminology based on this framework. This ‘stage‐based’ terminology can be used to supplement terms with ambiguous meanings (e.g. invasive, introduced, naturalized, weedy, etc.), and thereby improve clarity of future studies. This approach is based on the concept of ‘propagule pressure’ and has the additional benefit of identifying factors affecting the success of species at each stage. Under this framework, invasions can be more objectively understood as biogeographical, rather than taxonomic, phenomena; and author preferences in the use of existing terminology can be addressed. An example of this recommended protocol might be: ‘We examined distribution data to contrast the characteristics of invasive species (stages IVa and V) and noninvasive species (stages III and IVb)’.  相似文献   

11.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

12.
Biological invasions in Hungary are causing severe problems as a result of recent introductions and rapid land use changes. Poorly managed agricultural and rural, disturbed areas, and aquatic ecosystems are the most prone to plant invasions. Dry grasslands and semi-natural forests are less prone to invasions. A few plant species have led to human health (allergenic) problems. Some insect species have caused economic problems to crop production. A number of monitoring networks and control measures are in place for selected plants and insects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Determinants of vertebrate invasion success in Europe and North America   总被引:4,自引:0,他引:4  
Species that are frequently introduced to an exotic range have a high potential of becoming invasive. Besides propagule pressure, however, no other generally strong determinant of invasion success is known. Although evidence has accumulated that human affiliates (domesticates, pets, human commensals) also have high invasion success, existing studies do not distinguish whether this success can be completely explained by or is partly independent of propagule pressure. Here, we analyze both factors independently, propagule pressure and human affiliation. We also consider a third factor directly related to humans, hunting, and 17 traits on each species' population size and extent, diet, body size, and life history. Our dataset includes all 2362 freshwater fish, mammals, and birds native to Europe or North America. In contrast to most previous studies, we look at the complete invasion process consisting of (1) introduction, (2) establishment, and (3) spread. In this way, we not only consider which of the introduced species became invasive but also which species were introduced. Of the 20 factors tested, propagule pressure and human affiliation were the two strongest determinants of invasion success across all taxa and steps. This was true for multivariate analyses that account for intercorrelations among variables as well as univariate analyses, suggesting that human affiliation influenced invasion success independently of propagule pressure. Some factors affected the different steps of the invasion process antagonistically. For example, game species were much more likely to be introduced to an exotic continent than nonhunted species but tended to be less likely to establish themselves and spread. Such antagonistic effects show the importance of considering the complete invasion process.  相似文献   

14.
15.
  总被引:1,自引:0,他引:1  
Biological invasions are a growing aspect of global biodiversity change. In many regions, introduced species richness increases supralinearly over time. This does not, however, necessarily indicate increasing introduction rates or invasion success. We develop a simple null model to identify the expected trend in invasion records over time. For constant introduction rates and success, the expected trend is exponentially increasing. Model extensions with varying introduction rate and success can also generate exponential distributions. We then analyse temporal trends in aquatic, marine and terrestrial invasion records. Most data sets support an exponential distribution (15/16) and the null invasion model (12/16). Thus, our model shows that no change in introduction rate or success need be invoked to explain the majority of observed trends. Further, an exponential trend does not necessarily indicate increasing invasion success or 'invasional meltdown', and a saturating trend does not necessarily indicate decreasing success or biotic resistance.  相似文献   

16.
Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk.  相似文献   

17.
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.  相似文献   

18.
    
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

19.
Miscanthus sinensis (Anderss.) is a perennial grass species that has been grown widely as an ornamental since the late 1800s and is now being considered for bioenergy production in the United States. With its ability to be grown from seed and tolerate cold climates, this species offers practical advantages over current cultivars of the higher‐yielding hybrid species, M.×giganteus. Yet a large‐scale release of M. sinensis for bioenergy production in colder northern regions could result in new invasions into natural areas. We show, with reference to historical records and data collected in six wild US populations of M. sinensis in 2009, that ornamental varieties of this species have a long history of localized escape in the Eastern United States, primarily within the Appalachian region. To prevent further escape and gene flow, we recommend the development of sterile or functionally sterile varieties of M. sinensis or the restriction of its usage as a donor of genetic material to new sterile cultivars of M. ×giganteus. Other appropriate precautions for new biomass varieties include experimental demonstration of low invasiveness in the target region ahead of commercial production, along with postintroduction stewardship programs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号