首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The presence of the cytoskeleton of Acanthamoeba castellanii was observed by means of cryo-electronmicroscopy and immunofluorescence techniques. This structure is formed largely by fibers and networks of actin located mainly in cytoplasmic locomotion structures as lamellipodia and as well as in various endocytic structures. In addition, the comparision between total actin content in whole extracts among different amoebae was made. The molecular weight of actin in A. castellanii was 44 kDa, and 45 kDa for Naegleria fowleri and Entamoeba histolytica.  相似文献   

4.
We have investigated the role of the Arp2/3 complex in Dictyostelium cell chemotaxis towards cyclic-AMP and in the actin polymerization that is triggered by this chemoattractant. We confirm that the Arp2/3 complex is recruited to the cell perimeter, or into a pseudopod, after cyclic-AMP stimulation and that this is coincident with actin polymerization. This recruitment is inhibited when actin polymerization is blocked using latrunculin suggesting that the complex binds to pre-existing actin filaments, rather than to a membrane associated signaling complex. We show genetically that an intact Arp2/3 complex is essential in Dictyostelium and have produced partially active mutants in two of its subunits. In these mutants both phases of actin polymerization in response to cyclic-AMP are greatly reduced. One mutant projects pseudopodia more slowly than wild type and has impaired chemotaxis, together with slower movement. The second mutant chemotaxes poorly due to an adhesion defect, suggesting that the Arp2/3 complex plays a crucial part in adhering cells to the substratum as they move. We conclude that the Arp2/3 complex largely mediates the actin polymerization response to chemotactic stimulation and contributes to cell motility, pseudopod extension and adhesion in Dictyostelium chemotaxis.  相似文献   

5.
The remodeling of the actin cytoskeleton is essential for cell migration, cell division, and cell morphogenesis. Actin-binding proteins play a pivotal role in reorganizing the actin cytoskeleton in response to signals exchanged between cells. In consequence, actin-binding proteins are increasingly a focus of investigations into effectors of cell signaling and the coordination of cellular behaviors within developmental processes. One of the first actin-binding proteins identified was filamin, or actin-binding protein 280 (ABP280). Filamin is required for cell migration (Cunningham et al. 1992), and mutations in human alpha-filamin (FLN1; Fox et al. 1998) are responsible for impaired migration of cerebral neurons and give rise to periventricular heterotopia, a disorder that leads to epilepsy and vascular disorders, as well as embryonic lethality. We report the identification and characterization of a mutation in Drosophila filamin, the homologue of human alpha-filamin. During oogenesis, filamin is concentrated in the ring canal structures that fortify arrested cleavage furrows and establish cytoplasmic bridges between cells of the germline. The major structural features common to other filamins are conserved in Drosophila filamin. Mutations in Drosophila filamin disrupt actin filament organization and compromise membrane integrity during oocyte development, resulting in female sterility. The genetic and molecular characterization of Drosophila filamin provides the first genetic model system for the analysis of filamin function and regulation during development.  相似文献   

6.
Rho GTPases regulate fundamental processes including cell morphology and migration in various organisms. Guanine nucleotide exchange factor (GEF) has a crucial role in activating small GTPase by exchange GDP for GTP. In fission yeast Schizosaccharomyces pombe, six members of the Rho small GTPase family were identified and reported to be involved in cell morphology and polarized cell growth. We identified seven genes encoding Rho GEF domain from genome sequence and analyzed. Overexpressions of identified genes in cell lead to change of morphology, suggesting that all of them are involved in the regulation of cell morphology. Although all of null mutants were viable, two of seven null cells had morphology defects and five of seven displayed altered actin cytoskeleton arrangements. Most of the double mutants were viable and biochemical analysis revealed that each of GEFs bound to several small G proteins. These data suggest that identified Rho GEFs are involved in the regulation of cell morphology and share signals via small GTPase Rho family.  相似文献   

7.
Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of β-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.  相似文献   

8.
We have identified a novel gene, Tortoise (TorA), that is required for the efficient chemotaxis of Dictyostelium discoideum cells. Cells lacking TorA sense chemoattractant gradients as indicated by the presence of periodic waves of cell shape changes and the localized translocation of cytosolic PH domains to the membrane. However, they are unable to migrate directionally up spatial gradients of cAMP. Cells lacking Mek1 display a similar phenotype. Overexpression of Mek1 in torA- partially restores chemotaxis, whereas overexpression of TorA in mek1- does not rescue the chemotactic phenotype. Regardless of the genetic background, TorA overexpressing cells stop growing when separated from a substrate. Surprisingly, TorA-green fluorescent protein (GFP) is clustered near one end of mitochondria. Deletion analysis of the TorA protein reveals distinct regions for chemotactic function, mitochondrial localization, and the formation of clusters. TorA is associated with a round structure within the mitochondrion that shows enhanced staining with the mitochondrial dye Mitotracker. Cells overexpressing TorA contain many more of these structures than do wild-type cells. These TorA-containing structures resist extraction with Triton X-100, which dissolves the mitochondria. The characterization of TorA demonstrates an unexpected link between mitochondrial function, the chemotactic response, and the capacity to grow in suspension.  相似文献   

9.
The Rho-kinases are widely utilized downstream targets of the activated Rho GTPase that have been directly implicated in many aspects of Rho-dependent effects on F-actin assembly, acto-myosin contractility, and microtubule stability, and consequently play an essential role in regulating cell shape, migration, polarity, and division. We have determined that the single closely related Drosophila Rho-kinase ortholog, DRok, is required for several aspects of oogenesis, including maintaining the integrity of the oocyte cortex, actin-mediated tethering of nurse cell nuclei, "dumping" of nurse cell contents into the oocyte, establishment of oocyte polarity, and the trafficking of oocyte yolk granules. These defects are associated with abnormalities in DRok-dependent actin dynamics and appear to be mediated by multiple downstream effectors of activated DRok that have previously been implicated in oogenesis. DRok regulates at least one of these targets, the membrane cytoskeletal cross-linker DMoesin, via a direct phosphorylation that is required to promote localization of DMoesin to the oocyte cortex. The collective oogenesis defects associated with DRok deficiency reveal its essential role in multiple aspects of proper oocyte formation and suggest that DRok defines a novel class of oogenesis determinants that function as key regulators of several distinct actin-dependent processes required for proper tissue morphogenesis.  相似文献   

10.
The Pak kinases are effectors for the small GTPases Rac and Cdc42 and are divided into two subfamilies. Group I Paks possess an autoinhibitory domain that can suppress their kinase activity in trans. In Drosophila, two Group I kinases have been identified, dPak and Pak3. Rac and Cdc42 participate in dorsal closure of the embryo, a process in which a hole in the dorsal epidermis is sealed through migration of the epidermal flanks over a tissue called the amnioserosa. Dorsal closure is driven in part by an actomyosin contractile apparatus at the leading edge of the epidermis, and is regulated by a Jun amino terminal kinase (JNK) cascade. Impairment of dPak function using either loss-of-function mutations or expression of a transgene encoding the autoinhibitory domain of dPak led to disruption of the leading edge cytoskeleton and defects in dorsal closure but did not affect the JNK cascade. Group I Pak kinase activity in the amnioserosa is required for correct morphogenesis of the epidermis, and may be a component of the signaling known to occur between these two tissues. We conclude that dorsal closure requires Group I Pak function in both the amnioserosa and the epidermis.  相似文献   

11.
PbrACT1, the gene responsible for the synthesis of actin in Paracoccidioides brasiliensis, was found as a single copy, organized into six exons and five introns. Its open reading frame (ORF) codes for a putative protein of 375 amino acids, with a molecular mass of 41.5 kDa and an isoelectric point of 5.6. Analysis of the nucleotide sequence revealed a high homology to other fungal actins, the presence of characteristic fungal actin sequences, and heat shock elements at the 5′ untranslated region (UTR). Phylogenetic analyses with deduced amino acid sequences of fungal actins grouped P. brasiliensis within the phylum Ascomycota, order Onygenales, in concordance with a few previous reports. Patterns of expression through the temperature-induced morphological transitions from mycelial to yeast-like shapes and reverse, suggests that PbrACT1 is regulated in this process. The PbrACT1 gene sequence is available at the GenBank database under accession number AY383732.  相似文献   

12.
13.
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.  相似文献   

14.
15.
Drosophila parkin, the ortholog of the human parkin gene, responsible for a familiar form of autosomal recessive juvenile parkinsonism, has been shown previously to be involved in Drosophila male fertility. Loss-of-function mutations in the parkin gene cause failure of spermatid individualization by affecting the proper progression of the actin-based investment cones that assemble in the nuclear region, but fail to translocate in synchrony down the cyst. In parkin mutants, the investment cones are scattered along the post-elongated spermatid bundles and fail to act properly in the process of sperm individualization. Using phase-contrast and electron microscopy analysis, we demonstrate that the parkin spermatids assemble a seemingly normal onion-stage nebenkern, but when the axoneme elongates only one mitochondrial derivative unfurls from the nebenkern. This unique mitochondrial derivative undergoes abnormal shaping and condensation during spermatid elongation. Our results indicate that parkin gene function is necessary for mitochondrial morphogenesis during earlier and later phases of spermiogenesis. The failure of cyst individualization may be due to the sensitivity of investment cone movement to the perturbation of mitochondrial morphology during spermatid elongation.  相似文献   

16.
During tracheal development in Drosophila, some branches join to form a continuous luminal network. Specialized cells at the branch tip, called fusion cells, extend filopodia to make contact and become doughnut shaped to allow passage of the lumen. These morphogenetic processes accompany the highly regulated cytoskeletal reorganization of fusion cells. We identified the Drosophila formin3 (form3) gene that encodes a novel formin and plays a role in tracheal fusion. Formins are a family of proteins characterized by highly conserved formin homology (FH) domains. The formin family functions in various actin-based processes, including cytokinesis and cell polarity. During embryogenesis, form3 mRNA is expressed mainly in the tracheal system. In form3 mutant embryos, the tracheal fusion does not occur at some points. This phenotype is rescued by the forced expression of form3 in the trachea. We used live imaging of GFP-moesin during tracheal fusion to show that an F-actin structure that spans the adjoining fusion cells and mediates the luminal connection does not form at abnormal anastomosis sites in form3 mutants. These results suggested that Form3 plays a role in the F-actin assembly, which is essential for cellular rearrangement during tracheal fusion.  相似文献   

17.
Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human γ1/γ2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.  相似文献   

18.
Drosophila photoreceptors undergo marked changes in their morphology during pupal development. These changes include a five-fold elongation of the retinal cell body and the morphogenesis of the rhabdomere, the light sensing structure of the cell. Here we show that twinstar (tsr), which encodes Drosophila cofilin/ADF (actin-depolymerizing factor), is required for both of these processes. In tsr mutants, the retina is shorter than normal, the result of a lack of retinal elongation. In addition, in a strong tsr mutant, the rhabdomere structure is disorganized and the microvilli are short and occasionally unraveled. In an intermediate tsr mutant, the rhabdomeres are not disorganized but have a wider than normal structure. The adherens junctions connecting photoreceptor cells to each other are also found to be wider than normal. We propose, and provide data supporting, that these wide rhabdomeres and adherens junctions are secondary events caused by the inhibition of retinal elongation. These results provide insight into the functions of the actin cytoskeleton during morphogenesis of the Drosophila eye.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号