首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
T cell adhesion molecules   总被引:7,自引:0,他引:7  
Cell adhesion or conjugate formation between T lymphocytes and other cells is an important early step in the generation of the immune response. Although the antigen-specific T cell receptor confers antigen recognition and specificity, a number of other molecules expressed on the T cell surface are involved in the regulation of lymphocyte adhesion. T cell molecules that function to strengthen adhesion include lymphocyte function-associated antigen (LFA)-1, CD2, CD4, and CD8. Their ligands have recently been identified. LFA-1 is a member of the integrin family of adhesion receptors and one of its ligands is intercellular adhesion molecule-1 (ICAM-1); a ligand for CD2 is LFA-3; and ligands for CD4 and CD8 appear to be major histocompatibility complex class II and class I molecules, respectively. In addition, T cells express a number of receptors thought to be involved in cell matrix adhesion. The function and significance of these T cell adhesion receptors and their ligands are reviewed.  相似文献   

2.
beta 1 integrin containing complexes have been implicated as the primary adhesion structures in many lymphocyte extracellular matrix (ECM) interactions. However, many B lymphocytes lack surface expression of the beta 1 subunit, implying that this subpopulation of lymphoid cells must employ alternate adhesion structures if they are to maintain an interactive capacity with ECM. An examination of the adherence properties of the beta 1 integrin-negative B cell line JY indicated that these cells exhibit little or no basal adherence to any of the ECM components examined. However, these cells could be induced to adhere to the ECM components fibronectin, laminin, and vitronectin following treatment with PMA. Blocking studies with monoclonal antibodies indicated the alpha v beta 3 integrin complex was involved in the attachment to each of these ligands. However, the adherence to fibronectin displayed a complex pattern of inhibition suggesting the involvement of other ECM receptors. The utilization of the alpha v beta 3 complex was not unique to the JY cell line. Other B cell lines were observed to employ alpha v beta 3, and these lines similarly lacked expression of beta 1 integrin. These results indicate that alpha v beta 3 can act as a lymphoid ECM-adhesion structure which may provide an alternative means for lymphocytes to interact with ECM. Furthermore, these studies provide evidence for the presence of lymphoid-associated alpha v beta 3 integrins with regulatable activity, which contrasts with the constitutive adhesive potential of these complexes when present on other cell types.  相似文献   

3.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

4.
A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non-lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those of lymphocyte homing receptors suggests that these glycoproteins represent a novel type of cell adhesion/recognition molecule (H-CAM) potentially mediating cell-cell or cell-matrix interactions in multiple tissues.  相似文献   

5.
The invasion of neoplastic cells into healthy brain tissue is a pathologic hallmark of gliomas and contributes to the failure of current therapeutic modalities (surgery, radiation and chemotherapy). Transformed glial cells share the common attributes of the invasion process, including cell adhesion to extracellular matrix (ECM) components, cell locomotion, and the ability to remodel extracellular space. However, glioma cells have the ability to invade as single cells through the unique environment of the normal central nervous system (CNS). The brain parenchyma has a unique composition, mainly hyaluronan and is devoid of rigid protein barriers composed of collagen, fibronectin and laminin. The integrins and the hyaluronan receptor CD44 are specific adhesion receptors active in glioma-ECM adhesion. These adhesion molecules play a major role in glioma cell-matrix interactions because the neoplastic cells use these receptors to adhere to and migrate along the components of the brain ECM. They also interact with the proteases secreted during glioma progression that degrade ECM allowing tumor cells to spread and diffusely infiltrate the brain parenchyma. The plasminogen activators (PAs), matrix metalloproteinases (MMPs) and lysosomal cysteine peptidases called cathepsins are also induced during the invasive process. Understanding the mechanisms of tumor cell invasion is critical as it plays a central role in glioma progression and failure of current treatment due to tumor recurrence from micro-disseminated disease. This review will focus on the impact of microregional heterogeneity of the ECM on glioma invasion in the normal adult brain and its modifications in tumoral brain.  相似文献   

6.
Given prior evidence that adhesion molecules play critical roles in T cell recognition, it is important to identify new adhesion pathways and explore their role in T cell activation. Our studies of T cell proliferation complement concurrent studies of T cell adhesion; both demonstrate that resting CD4+ human T lymphocytes express the VLA integrins VLA-4, VLA-5, and VLA-6, and can use these receptors to interact with the extracellular matrix (ECM) proteins fibronectin (VLA-4 and VLA-5) and laminin (VLA-6). VLA-dependent interaction of resting human CD4+ T cells with fibronectin (FN) and laminin (LN) facilitates CD3-mediated T cell proliferation. Specifically, T cells do not proliferate in response to a wide range of concentrations of a CD3 mAb, OKT3, immobilized on plastic. However, coimmobilization with the CD3 mAb of FN or LN, but not other ECM proteins such as fibrinogen and collagen, consistently results in strong T cell proliferation. mAb blocking studies demonstrate that three VLA integrin receptor/ligand interactions mediate costimulation: VLA-4/FN, VLA-5/FN, and VLA-6/LN. VLA-5-dependent binding to FN but not costimulation by FN can be specifically blocked with peptides containing the RGD (arg-gly-asp) tripeptide sequence whereas VLA-4-dependent binding and costimulation can both be efficiently inhibited by a 12 amino acid peptide, LHGPEILDVPST (leu-his-gly-pro-glu-iso-leu-asp-val-pro-ser-thr), derived from the alternatively spliced IIICS region of FN. The costimulation provided by FN and LN in this system is stronger than and distinct from costimulatory signals provided by cytokines, such as IL-1 beta, IL-6,, and IL-7. These results suggest that, such as other adhesion molecules, T cell VLA integrins may also function in a dual capacity as adhesion and signalling molecules. In addition, they suggest that the interaction of T cells in vivo with ECM via VLA integrins plays a role not only in T cell migratory processes but may also influence Ag-specific T cell recognition.  相似文献   

7.
A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesive interactions. Here we show that gamma-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. gamma-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or benzamide [corrected], both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of gamma-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites.  相似文献   

8.
Chemotaxis, the directed migration of leukocytes towards a chemoattractant gradient, is a key phenomenon in the immune response. During lymphocyte-endothelial and – extracellular matrix interactions, chemokines induce the polarization of T lymphocytes. with generation of specialized cell compartments. The chemokine receptors involved in detection of the chemoattractant gradients concentrate at the leading edge (advancing front or anterior pole) of the cell. The adhesion molecules ICAM- 1, -3, CD44 and CD43 redistribute to the uropod, an appendage at the posterior pole of migrating T lymphocyte that protrudes from the contact area with endothelial or extracellular matrix substrates. Whereas chemokine receptors sense the direction of migration, the uropod is involved in the recruitment of bystander leukocytes through LFA-1/ICAM-dependent cell cell interactions. While β-actin concentrates preferentially at the cell's leading edge, the motor protein myosin II and a microtubule organizing center (MTOC) are packed in the uropod. The actin-binding protein moesin, which belongs to the ERM family of ezrin, radixin and moesin, redistributes to the distal portion of uropods and physically interacts with ICAM-3, CD44 and CD43, thus acting as a physical link between the membrane molecules and the actin cytoskeleton. Moreover, the moesin-ICAM-3 association correlates with the degree of cell polarity. The redistribution of the chemokine receptors and adhesion molecules to opposite poles of the cell in response to a chemoattractant gradient may guide cell migration and cell-cell interactions during lymphoid cell trafficking in immune and inflammatory responses.  相似文献   

9.
For immune surveillance and function to be effective, T lymphocytes constantly recirculate via lymph and blood between lymphoid organs and body tissues. To enable efficient cell movement and migration, cell adhesion to components of the basement membrane and the extracellular matrix (ECM) must be a rapid and transitory process. Whether phosphorylation and dephosphorylation of cellular proteins are involved in this phenomena was explored by monitoring the adhesion of T cells to immobilized ECM proteins. A short exposure of 51Cr-labeled human CD4+ T cells to phorbol esters in vitro induced a rapid beta 1-integrin-mediated adhesion to both fibronectin and laminin, as determined by inhibition with anti-integrin antibodies. Adhesion was reversible; detachment from the immobilized ECM ligands occurred between 20 and 120 min without further intervention. This T cell adhesion was regulated by the activation of protein kinase C because (a) staurosporine and H-7 inhibitors of protein kinase C suppressed T cell adhesion, and (b) PMA-induced down-regulation of intracellular levels of protein kinase C was associated with the abrogation of the T cell adhesiveness to fibronectin and laminin. Furthermore, inhibition of protein phosphatases activity by okadaic acid delayed the detachment of the T cells from fibronectin or laminin. Thus, we suggest that T cell-ECM interactions such as adhesion and detachment are regulated, respectively, by protein kinase C and protein phosphatases.  相似文献   

10.
The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes transmigrate this protein barrier, with emphasis on T lymphocytes. Recent data suggest that the classical concept of cell-matrix adhesion requires revision with respect to leukocyte-ECM interactions. Whereas specific receptors may be required for leukocyte recognition of ECM molecules or three-dimensional structural domains, the role of adhesion in migration as perceived from the traditional studies of adherent cell-ECM interactions is less clear. Further, the indirect effects of ECM such as the binding and presentation of cytokines or chemotactic factors may more profoundly influence the directed migration of normally non-adherent leukocytes than the migration of adherent cells such as epithelial cells or fibroblasts. Proteases (in particular matrix metalloproteinases) released at sites of inflammation can selectively process ECM, cell surface molecules or soluble factors, which may result in the release of bioactive fragments that can function as chemoattractants for different leukocyte subsets or may modulate the activity/function of resident mesenchymal and immune cells. Current findings suggest that different leukocyte types employ different mechanisms to migrate across or through the ECM; this might be determined by the composition and organization of the ECM itself.  相似文献   

11.
We have identified monoclonal antibodies that inhibit human cell adhesion to collagen (P1H5), fibronectin (P1F8 or P1D6), and collagen and fibronectin (P1B5) that react with a family of structurally similar glycoproteins referred to as extracellular matrix receptors (ECMRs) II, VI, and I, respectively. Each member of this family contains a unique alpha subunit, recognized by the antibodies, and a common beta subunit, each of approximately 140 kD. We show here that ECMR VI is identical to the fibronectin receptor (FNR), very late antigen (VLA) 5, and platelet glycoproteins Ic-IIa and shall be referred to as FNR. Monoclonal antibodies to FNR inhibit lymphocyte, fibroblast, and platelet adhesion to fibronectin-coated surfaces. ECMRs I, II, and FNR were differentially expressed in platelets, resting or activated lymphocytes, and myeloid, epithelial, endothelial, and fibroblast cell populations, suggesting a functional role for the receptors in vascular emigration and selective tissue localization. Tissue staining of human fetal skin localized ECMRs I and II to the basal epidermis primarily, while monoclonal antibodies to the FNR stained both the dermis and epidermis. Experiments carried out to investigate the functional roles of these receptors in mediating cell adhesion to complex extracellular matrix (ECM) produced by cells in culture revealed that complete inhibition of cell adhesion to ECM required antibodies to both the FNR and ECMR II, the collagen adhesion receptor. These results show that multiple ECMRs function in combination to mediate cell adhesion to complex EMC templates and predicts that variation in ECM composition and ECMR expression may direct cell localization to specific tissue domains.  相似文献   

12.
Cell surface receptors for molecular chaperones   总被引:2,自引:0,他引:2  
Heat shock proteins are intracellular molecular chaperones. However, extracellular heat shock proteins have recently been shown to mediate a range of powerful effects in inflammatory cells, neuronal cells and immune cells. These effects are transmitted by a number of cell surface receptors including LRP/CD91, CD40, Toll-like receptors, Scavenger receptors and c-type Lectins. However, although extracellular heat shock proteins are products of at least five different gene superfamilies, similar receptor types often trigger their effects. We have assessed heat shock protein binding to the different receptor types with particular regard to its role in tumor immunology. Heat shock protein 70 released from dying tumor cells or injected as part of a vaccine induces a remarkable range of immune effects. This molecular chaperone induces powerful pro-inflammatory signaling cascades leading to the activation of antigen presenting cells. In addition, heat shock protein 70 is able to transport antigenic peptides as cargo from the tumor cell cytoplasm across the membranes of antigen presenting cells and deliver them to major histocompatability class I molecules, a process known as "cross-presentation". The resulting major histocompatability class I-peptide complexes are then displayed on the cell surface by antigen presenting cells, leading to activation of cytotoxic T lymphocytes and tumor cell killing. Understanding how heat shock protein-receptor binding orchestrates individual components of tumor immunity will permit enhanced design of molecular chaperone based immunotherapy.  相似文献   

13.
Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motility without attaching to the ECM, or sliding and stepping motility with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells’ speed and persistence decreases. Additionally, the model predicts random walks with short-term persistent but long-term subdiffusive properties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front allow for more persistent motility than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.  相似文献   

14.
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.  相似文献   

15.
Tissue‐embedded cells are often exposed to a complex mixture of extracellular matrix (ECM) molecules, to which they bind with different cell adhesion receptors and affinities. Differential cell adhesion to ECM components is believed to regulate many aspects of tissue function, such as the sorting of specific cell types into different tissue compartments or ECM niches. In turn, aberrant switches in cell adhesion preferences may contribute to cell misplacement, tissue invasion, and metastasis. Methods to determine differential adhesion profiles of single cells are therefore desirable, but established bulk assays usually only test cell population adhesion to a single type of ECM molecule. We have recently demonstrated that atomic force microscopy‐based single‐cell force spectroscopy (SCFS), performed on bifunctional, microstructured adhesion substrates, provides a useful tool for accurately quantitating differential matrix adhesion of single Chinese hamster ovary cells to laminin and collagen I. Here, we have extended this approach to include additional ECM substrates, such as bifunctional collagen I/collagen IV surfaces, as well as adhesion‐passivated control surfaces. We investigate differential single cell adhesion to these substrates and analyze in detail suitable experimental conditions for comparative SCFS, including optimal cell‐substrate contact times and the impact of force cycle repetitions on single cell adhesion force statistics. Insight gained through these experiments may help in adapting this technique to other ECM molecules and cell systems, making directly comparative SCFS a versatile tool for comparing receptor‐mediated cell adhesion to different matrix molecules in a wide range of biological contexts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum-level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.  相似文献   

17.
CD5 and CD6 are closely related lymphocyte surface receptors of the scavenger receptor cysteine-rich superfamily, which show highly homologous extracellular regions but little conserved cytoplasmic tails. Both molecules are expressed on the same lymphocyte populations (thymocytes, mature T cells, and B1a cells) and share similar co-stimulatory properties on mature T cells. Although several works have been reported on the molecular associations and the signaling pathway mediated by CD5, very limited information is available for CD6 in this regard. Here we show the physical association of CD5 and CD6 at the cell membrane of lymphocytes, as well as their localization at the immunological synapse. CD5 and CD6 co-immunoprecipitate from Brij 96 but not Nonidet P-40 cell lysates, independently of both the co-expression of other lymphocyte surface receptors and the integrity of CD5 cytoplasmic region. Fluorescence resonance energy transfer analysis, co-capping, and co-modulation experiments demonstrate the physical in vivo association of CD5 and CD6. Analysis of T cell/antigen-presenting cells conjugates shows the accumulation of both molecules at the immunological synapse. These results indicate that CD5 and CD6 are structurally and physically related receptors, which may be functionally linked to provide either similar or complementary accessory signals during T cell activation and/or differentiation.  相似文献   

18.
Precursors of uterine NK cells home to the uterus during early pregnancy from multiple lymphohemopoietic sources. In mouse uterine tissue, pregnancy markedly up-regulates both L-selectin- and alpha(4) integrin-dependent adhesion pathways for circulating human CD56(bright) cells, the phenotype of human uterine NK cells. Based on roles for these adhesion molecules in lymphocyte homing, we examined effects of pregnancy or the steroid hormones 17beta-estradiol or progesterone on lymphocyte-endothelial interactions in secondary lymphoid tissues and in uterus. From preimplantation gestation day 3, specialized high endothelial venules in peripheral lymph nodes and Peyer's patches supported elevated L-selectin and alpha(4)beta(7) integrin-dependent lymphocyte adhesion under shear throughout pregnancy, as compared with high endothelial venules of virgin or postpartum donors. Squamous endothelium from nonlymphoid tissue was not affected. Pregnancy-equivalent endothelial responses were observed in lymph nodes and Peyer's patches from ovariectomized mice receiving 17beta-estradiol and/or progesterone replacement therapy. Adhesion of human CD56(bright) cells to uteri from pregnant or hormone-treated ovariectomized mice was enhanced through L-selectin- and alpha(4) integrin-dependent mechanisms and involved multiple vascular adhesion molecules including mucosal addressin cell adhesion molecule-1, VCAM-1, and peripheral lymph node addressin. Analysis of Tie2-green fluorescence protein transgenic mice demonstrated that CD56(bright) cells adhered primarily to vascular endothelium within the decidua basalis. Microdomain localization of adhesion involving large clusters of lymphocytes was induced on uteri from natural matings, but not pseudopregnancy. Steroid hormones also had independent effects on L-selectin function in splenic lymphocytes that mimicked physiological stimulation induced by pregnancy or fever-range temperatures. These results provide the first evidence for coordinated, organ-specific, steroid hormone-induced changes in lymphocyte homing mechanisms that could contribute to local and systemic immune responses during pregnancy.  相似文献   

19.
《The Journal of cell biology》1993,121(5):1141-1152
The cutaneous T cell lymphomas (CTCL), typified by mycosis fungoides, and several chronic T cell mediated dermatoses are characterized by the migration of T lymphocytes into the epidermis (epidermotropism). Alternatively, other types of cutaneous inflammation (malignant cutaneous B cell lymphoma, CBCL, or lymphocytoma cutis, non-malignant T or B cell type) do not show evidence of epidermotropism. This suggests that certain T lymphocyte subpopulations are able to interact with and penetrate the epidermal basement membrane. We show here that T lymphocytes derived from patients with CTCL (HUT 78 or HUT 102 cells), adhere to the detergent-insoluble extracellular matrix prepared from cultured basal keratinocytes (HFK ECM). HUT cell adhesion to HFK ECM was inhibitable with monoclonal antibodies (mAbs) directed to the alpha 3 (P1B5) or beta 1 (P4C10) integrin receptors, and could be up- regulated by an activating anti-beta 1 mAb (P4G11). An inhibitory mAb, P3H9-2, raised against keratinocytes identified epiligrin as the ligand for alpha 3 beta 1 positive T cells in HFK ECM. Interestingly, two lymphocyte populations could be clearly distinguished relative to expression of alpha 3 beta 1 by flow cytometry analysis. Lymphokine activated killer cells, alloreactive cytotoxic T cells and T cells derived from patients with CTCL expressed high levels of alpha 3 beta 1 (alpha 3 beta 1high). Non-adherent peripheral blood mononuclear cells, acute T or B lymphocytic leukemias, or non-cutaneous T or B lymphocyte cell lines expressed low levels of alpha 3 beta 1 (alpha 3 beta 1low). Resting PBL or alpha 3 beta 1low T or B cell lines did not adhere to HFK ECM or purified epiligrin. However, adhesion to epiligrin could be up-regulated by mAbs which activate the beta 1 subunit indicating that alpha 3 beta 1 activity is a function of expression and affinity. In skin derived from patients with graft-vs.-host (GVH) disease, experimentally induced delayed hypersensitivity reactions, and CTCL, the infiltrating T cells could be stained with mAbs to alpha 3 or beta 1 and were localized in close proximity to the epiligrin-containing basement membrane. Infiltrating lymphocytes in malignant cutaneous B disease (CBCL) did not express alpha 3 beta 1 by immunohistochemical techniques and did not associate with the epidermal basement membrane. The present findings clearly define a function for alpha 3 beta 1 in T cells and strongly suggest that alpha 3 beta 1 interaction with epiligrin may be involved in the pathogenesis of cutaneous inflammation.  相似文献   

20.
Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号