首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viablse, purely cholinergic synaptosomes were prepared from the electric organ of Torpedo ocellata and partially purified by differential and sucrose density centrifugation. The synaptosomes contain acetylcholine (ACh), synaptic vesicles, cytoplasmic markers and mitochondria. No adherent postsynaptic membranes were detected. K+ depolarization as well as the ionophore A23187 mediate Ca2+ permeation into the synaptosomes and the consequent release of ACh. Mg2+ does not evoke ACh release whereas Sr2+ and Ba2+ can replace Ca2+ in evoking K+ depolarization induced ACh secretion. In accordance with the calcium hypothesis of stimulus–secretion coupling, both K+ depolarization and the ionophore A23187 seem to mediate the release of the same population of ACh molecules. The mode of action of the ionophore X537A differs from that of A23187. X537A acts independently of Ca2+ and induces the release of a larger fraction of the ACh contained in the fractionated nerve terminals. These results demonstrate that the Torpedo synaptosomes contain the neurosecretion apparatus in a functional active state. This preparation extends the utility of synaptosomes for structural and functional biochemical studies of neurotransmission, as it uniquely contains only one neurosecretion system (cholinergic).  相似文献   

2.
Immunohistochemical localization of cholinergic nerve terminals   总被引:13,自引:0,他引:13  
Summary Most of the published light-microscopic methods for the localization of cholinergic nerve pathways present various difficulties of interpretation. The production and characterization of an antiserum that binds specifically to cholinergic terminals is described. The antiserum was raised to small synaptosomes prepared from the purely cholinergic electric organ of Torpedo marmorata. It was shown to lyse cholinergic synaptosomes in a mixed population derived from guinea-pig cortex. After partial purification by adsorption onto nonspecific antigens, it was used to label nerve endings in several tissues of Torpedo, rats and guinea pigs using indirect immunofluorescence histochemistry. The antiserum appears to provide a highly specific means of localizing cholinergic nerve endings in these tissues.  相似文献   

3.
The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least partly by reducing Ca++ entry. The action of MIX is apparently mediated by cAMP.  相似文献   

4.
Abstract: Using isolated cholinergic synaptosomes prepared from Torpedo electric organ, we studied the effects of N,N'-dicyclohexylcarbodiimide (DCCD) on acetylcholine (ACh) synthesis, compartmentation, and release after stimulation. Whereas ACh synthesis was unchanged, ACh compartmentation inside synaptosomes was affected by the presence of DCCD. In resting conditions, the uptake into the synaptic vesicle pool of newly synthesized ACh (i.e., [14C]ACh synthesized in the presence of the drug) was progressively and markedly inhibited as the duration of DCCD preincubation was increased, whereas compartmentation of endogenous ACh was unchanged in the presence of DCCD. After stimulation, the release of endogenous ACh from DCCD-treated synaptosomes was similar to that of control, in contrast to the release of [14C]ACh, which was markedly inhibited. This inhibition was observed whatever the conditions of stimulation used (gramicidin D, calcium ionophore A23187, or KCI depolarization). The study of the compartmentation of [14C]ACh during stimulation revealed a transfer of highly labeled ACh from the free to the bound ACh compartment in the presence of DCCD, suggesting the existence of several ACh subcompartments within the free and bound ACh pools. The present results are discussed in comparison with the previously reported effects of vesamicol (AH5183) on ACh compartmentation and release.  相似文献   

5.
S Heisler 《Life sciences》1976,19(2):233-242
The ionophore, A-23187, was an effective pancreatic secretagogue. The response to A-23187 was Ca2+-dependent; Mg2+ reduced the secretory response to the ionophore. A-23187-stimulated enzyme release was potentiated by dibutyryl cyclic AMP; in the presence of carbachol, output of pancreatic protein paralleled the response to A-23187 alone. The time-course for secretion with A-23187 was similar to that observed with carbachol. The ionophore did not affect basal cyclic AMP levels but did stimulate a rapid Ca2+-dependent production of pancreatic cyclic GMP which preceded the onset of the secretory response. A-23187 did not significantly alter basal or carbachol-stimulated 45Ca efflux from isotope preloaded glands; yet in Ca2+-lowered media, it inhibited (reversed) the secretory response to carbachol, an effect which may have been due to an outward transport by the ionophore of cholinergic-mobilized intracellular Ca2+. Like carbachol, A-23187, inhibits the incorporation of amino acid into new protein, the effect being partially dependent on extracellular Ca2+. The data suggest that the pancreatic cholinergic receptor acts as a Ca2+-ionophore and that extracellular Ca2+ is utilized in the synthesis of cyclic GMP.  相似文献   

6.
The aim of the present study was to investigate possible changes of inositol 1,4,5-trisphosphate (IP3) mass in Torpedo cholinergic synaptosomes in conditions promoting stimulated acetylcholine (ACh) release. For this purpose, we used a radioreceptor IP3 mass assay and a chemiluminescent method for ACh detection. Torpedo cholinergic synaptosomes have consistent IP3 mass levels under resting conditions. The IP3 mass was neither modified by changes in external Ca2+ nor by a Ca2+-free medium containing EGTA. IP3 mass and ACh release, measured in the same conditions and in parallel, were increased by depolarization with high K+ and by the ionophores A-23187 and gramicidin-D in a manner dependent on external Ca2+ emphasizing that Ca2+ entry, independently of the influx mechanism involved, leads to an IP3 increase. The phospholipase Cβ inhibitors U-73122 and U-73343 reduced K+-stimulated IP3 levels while K+-evoked ACh release was almost completely blocked suggesting an additional effect of these drugs on depolarization-neurotransmitter secretion coupling. The effect reported showing an increase of IP3 by agents that stimulate ACh release may suggest a possible link between IP3 metabolism and the neurotransmitter release mechanism. However, such a link is probably not a direct one as implied by the results obtained with the inhibitors of phospholipase C. Copyright © 1996 Elsevier Science Ltd  相似文献   

7.
It has been demonstrated that human platelets form platelet-activating factor (PAF) when stimulated by thrombin, collagen and ionophore A-23187, but the mechanism of its formation has not been elucidated. In this study we demonstrated increased acetyltransferase activity (i.e., transfer of the acetyl moiety of [3H]acetyl-CoA to lyso-PAF (1-alkyl-sn-glycero-3-phosphocholine) to form PAF) occurring in human platelet microsomes made from platelets stimulated by thrombin or ionophore A-23187. This stimulation resulted in a 2-4-fold increase in acetyltransferase activity over unstimulated platelets. Acetyltransferase activity was also demonstrated by incubating [3H]acetate with whole platelets and stimulating with thrombin or ionophore A-23187. Radioactive PAF was detected when the platelets were stimulated. None was formed without stimulation. These findings indicate that acetyltransferase may play a role in the biosynthesis of PAF by human platelets.  相似文献   

8.
Abstract: Choline uptake by cholinergic nerve terminals is increased by depolarization; the literature suggests that this results from either the appearance of occult transporters or the increased activity of existing ones. The present experiments attempt to clarify the mechanism by which choline transport is regulated by testing if the preexposure of synaptosomes to choline mustard aziridinium ion prevents the stimulation-induced appearance of hemicholinium-3 binding sites and/or choline transport activity. Choline mustard inhibited irreversibly most of the “ground-state” (basal) high-affinity choline transport but only 50% of “ground-state” hemicholinium-3 binding sites. Exposure of both striatal and hippocampal synaptosomes to the mustard, before stimulation, inhibited K+-stimulated increases in choline transport and of [3H]hemicholinium-3 binding. We conclude that the mechanism by which choline transport is regulated involves the increased activity of a pool of transport sites that are occluded to hemicholinium-3 but are available to choline mustard aziridinium ion, and presumably to choline, before stimulation. However, the concentration of mustard needed to inhibit the stimulation-induced increase of [3H]hemicholinium-3 binding and choline transport was lower for striatal synaptosomes than for hippocampal synaptosomes. In the absence of extracellular Ca2+ or presence of high Mg2+ levels, the choline mustard did not prevent the appearance of extra striatal hemicholinium-3 binding sites. Also, high Mg2+ levels removed the ability of the mustard to inhibit K+-stimulated increases of either [3H]hemicholinium-3 binding or choline transport by hippocampal synaptosomes. In contrast, the preexposure of hippocampal synaptosomes to the mustard in the presence of a calcium ionophore (A23187) reduced the concentration of inhibitor needed to prevent the activation of [3H]hemicholinium-3 binding and choline uptake. Thus, we conclude that the ability of the choline mustard to alkylate the pool of choline transporters that are activated by stimulation appears dependent on the entry of extracellular Ca2+.  相似文献   

9.
Summary The trophotaenial absorptive cells (TACs) in goodeid embryos facilitate nutrient absorption during prolonged periods of intraovarian gestation. In a study of membrane differentiations associated with solute and ligand transfer in the trophotaeniae of Xenotoca eiseni, embryos were incubated in vivo with cationized ferritin (CF) prior to freeze-cleaving. This exposure to high concentrations of an adsorptive ligand was meant to induce swelling of the endosomal compartment. Macromolecular trafficking in TACs occurs via an apical endocytic complex consisting of plasma membrane invaginations, a large population of small vesicles, uniformly thick apical tubules, and endosomes. Freeze-fracture replicas showed that the microvillar plasma membrane P-face of TACs was studded with intramembrane particles (IMPs) at a fairly high density, whereas that of the cell surface proper contained a distinctly lower density and the tubulovesicular endocytic pits contained almost no IMPs. The majority of small vesicles and apical tubules in a near surface position displayed P-fracture faces with only a few odd IMPs, indicating that membrane, shuttling between the apical plasma membrane and intracellular sorting organelles, obviously does not carry along many large-sized integral membrane proteins. The distended endosomal compartment had many P-face-associated particles primarily clustered into patches. Specializations of the lateral plasma membrane included 4–8 tight junctional strands, relatively large complements of gap junction proteins, and numerous plaques of desmosomal membrane particles. A system of lamellar cisternae underlay the lateral cell surface that was in continuity with the intraepithelial space by numerous tubular canals, giving rise to an intracellular amplification of the basolateral plasma membrane. Their outward openings appeared as tiny pits on the cytoplasmic faces of freeze-cleaved cell membrane. The density of IMPs on the P-faces of the surface plasma membrane was apparently lower than that on its invaginated lamellar complex. Hence, it is concluded that the mobility of integral membrane proteins in the plane of the membrane may be hampered in movement across the surface pores.Supported by the Deutsche Forschungsgemeinschaft (Schi 268/1-1)  相似文献   

10.
Botulinum neurotoxins (BoNTs) are highly potent toxins that inhibit neurotransmitter release from peripheral cholinergic synapses. BoNTs consist of a toxifying light chain (LC; 50 kDa) and a binding/translocating heavy chain (HC; 100 kDa) linked through a disulfide bond. A DNA fragment encoding type A Clostridium botulinum heavy chain (BoNT/A HC) was amplified by polymerase chain reaction and cloned into an E. coli PET-15b vector. In vitro translated [35S]BoNT/A HC was identified by anti-BoNT/A polyclonal antibodies, and was used to investigate the binding of the toxin to rat synaptosomes. The binding of [35S]BoNT/A HC to synaptosomes was abolished by 500-fold excess of cold BoNT/A, and by incubation with trypsin. Treatment of BoNT/A HC with anti-BoNT/A or GT1b blocked its binding to synaptosomes. The radioactive BoNT/A HC recognized three proteins corresponding to a molecular mass of 150 (P150), 120 (P120), and 75 (P75) kDa in rat and bovine synaptosomal preparations. These results represent the first successful expression of functional full-length BoNT heavy chain.  相似文献   

11.
Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit. Using a dissection that isolates the pharynx and its embedded neural system of 20 neurones permits analysis of the neurotransmitter pathways within this microcircuit. We describe protocols for selective electrically evoked or ChR2-mediated cholinergic synaptic events in this circuit. The latter was achieved by generating strains, punc-17::ChR2(gf);yfp, that express ChR2(gf) in cholinergic neurones. PSPs evoked by both electrical and light stimulation exhibited a rapid time-course and were blocked by cholinergic receptor antagonists and rapidly reversed on cessation of the stimulus. Electrically evoked PSPs were also reduced in a hypomorphic mutant for the synaptic vesicle acetylcholine transporter, unc-17, further indicating they are nicotinic cholinergic PSPs. The pharyngeal nervous system is exquisitely sensitive to both electrical and light activation. For the latter, short light pulses of 200 μs delivered to punc-17::ChR2(gf);yfp are capable of generating full muscle action potentials. We conclude that the application of optogenetic approaches to the C. elegans isolated pharynx preparation opens the way for a precise molecular dissection of synaptic events in the pharyngeal microcircuit by providing a molecular and system level analysis of the synapses that control the feeding behaviour of C. elegans.  相似文献   

12.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

13.
The release of acetylcholine (ACh) from instantly frozen Torpedo electric organ synaptosomes in the course of stimulation is systematically associated with an increase in the number of large intramembrane particles counted on freeze-fracture replicas. The drug cetiedil, which is a potent inhibitor of ACh release, also blocks the increase in the number of large particles. The blockage was studied either after ionophore A 23187 or Glycera neurotoxin action in the presence of calcium.  相似文献   

14.
Summary The cycle of synaptic vesicles was studied in isolated nerve terminals and in the electric tissue of Torpedo marmorata. The synaptosomes, as used in this investigation, were a pure cholinergic subcellular fraction that captured dextran particles as an extracellular marker. This endocytotic phenomenon was enhanced by potassium depolarization. Field electrical stimulation (1 Hz and 10 Hz) of the electric organ induced the appearance of membrane foldings into presynaptic terminals. Morphometric studies showed that the number of synaptic vesicles did not decline until after at least 30 min. On the other hand, at 10 Hz these changes were accompanied by an increase in length of the membrane of the terminal. At 15 min of recovery after prolonged stimulation, there was a great increase in density of synaptic vesicles with a large number of vesicles of small diameter. This increase was accompanied by a decrease of membrane length, suggesting that reformation of vesicles is related to retrieval of membrane. Pharmacological stimulation with ouabain produced changes similar to those of long-term electrical stimulation. These changes in membrane were accompanied by a decrease of the population of synaptic vesicles and a wide variation in their diameters. It is concluded that structural changes reported here could not be correlated with kinetics of the transmitter release.We are grateful to Dr. E. Cañadas, Prof. Dr. D. Ribas and Dr. J. Tomás for valuable help and encouragement. We are indebted to Dr. P. Arté and to the staff of the Acuario de Barcelona del Instituto de Investigaciones Pesqueras for providing specimens of Torpedo marmorata. This investigation was supported by a grant Formación Personal Investigador del Ministerio de Universidades e Investigación  相似文献   

15.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

16.
A "fatigue" of acetylcholine (ACh) release is described in cholinergic synaptosomes stimulated with the calcium ionophore A23187 or gramicidin. A small conditioning calcium entry, which did not trigger a large ACh release, led to a decrease of transmitter release elicited by a second large calcium influx. This fatigue was half-maximal at approximately 30 microM external calcium and developed in a few minutes. In contrast, activation of release by calcium was very rapid and was half-maximal at approximately 0.5 mM external calcium. Activation and desensitization of release could be attributed to the recently identified presynaptic membrane protein, the "mediatophore." Proteoliposomes equipped with purified mediatophore showed a calcium-dependent activation and "fatigue" of ACh release similar to that of synaptosomes. It was found that the ionophore A23187 rapidly equilibrated internal and external calcium concentrations in proteoliposomes. Thus, the external calcium concentration gave the internal concentration required for activation or desensitization of proteoliposomal ACh release. The mediatophore showed remarkable calcium binding properties (20 sites/molecule) with a KD of 25 microM. The physiological implications of desensitization on the organization of release sites are discussed.  相似文献   

17.
Pure cholinergic synaptosomes from the electric organ of Torpedo marmorata have a saturable adenosine uptake mechanism (calculated Km, 3 μM; Vmax, 24 pmol/min/mg prot.). In this preparation, high intracellular calcium elicited by increasing external calcium concentration, potassium depolarization, sodium-calcium exchange inhibition or divalent cation ionophore A23187 action, inhibits adenosine uptake into synaptosomes. The data presented in this paper are consistent with the interpretation that high intracellular calcium participates in the regulation of the high-affinity adenosine uptake system.  相似文献   

18.
A latent ATP-dependent Ca storage system is enriched in preparations of pinched-off presynaptic nerve terminals (synaptosomes), and is exposed when the terminals are disrupted by osmotic shock or saponin treatment. The data indicate that a fraction of the Ca uptake (measured with 45Ca) is associated with the intraterminal mitochondria; it is blocked by ruthenium red, by FCCP, and by azide + dinitrophenol + oligomycin. There is, however, a residual ATP-dependent Ca uptake that is insensitive to the aforementioned poisons; this (nonmitochondrial) Ca uptake is blocked by tetracaine, mersalyl and A-23187. Moreover, A-23187 rapidly releases previously accumulated Ca from these (nonmitochondrial) storage sites, whereas the Ca chelator, EGTA, does not. The proteolytic enzyme, trypsin, spares the mitochondria but inactivates the nonmitochondrial Ca uptake mechanism. Chemical measurements of total Ca indicate that the ATP-dependent Ca uptake at the nonmitochondrial sites involves the net transfer of Ca from medium to tissue fragments. This system can sequester Ca when the ambient-ionized Ca2+ concentration (buffered with EGTA) is less than 0.3 micrometer; brain mitochondria take up little Ca when the ionized Ca2+ level is this low. Preliminary subfractionation studies indicate that the nonmitochondrial Ca storage system does not sediment with synaptic vesicles. We propose that this Ca storage system, which has many properties comparable to those of skeletal muscle sarcoplasmic reticulum, may be associated with intraterminal smooth endoplasmic reticulum. This Ca-sequestering organelle may help to buffer intracellular Ca.  相似文献   

19.
The accumulation of [3H]homocholine (3-trimethylamino-propan-1-01) by isolated synaptosomes prepared from rat brain was resolved kinetically into a high (KT= 3.0 μM) and a low (KT= 14.5 μM) affinity system. Although homocholine was not acetylated by solubilized choline acetyltransferase, 64% of the homocholine accumulated by intact synaptosomes via the high affinity uptake process was acetylated. Homocholine was also acetylated in the superior cervical ganglion of the cat, and the amount of acetylhomocholine formed was increased (12-fold) by preganglionic nerve stimulation. In ganglia, acetylhomocholine was available for release by preganglionic nerve impulses, and its release was Ca2+-dependent, It is concluded that homocholine can form a cholinergic false transmitter, and that the substrate specificity of choline acetyltransferase in vitro might be different from that in situ.  相似文献   

20.
CHOLINE: SELECTIVE ACCUMULATION BY CENTRAL CHOLINERGIC NEURONS   总被引:20,自引:8,他引:12  
Abstract— Most of the cholinergic input to the hippocampus was destroyed by placement of lesions in the medial septal area. In animals with such lesions we found that hippocampal ChAc activity was reduced by 85–90% and endogenous acetylcholine levels were reduced by more than 80 %. When hippocampal synaptosomes from animals with lesions were incubated with [3H]choline at concentrations of 7.5 nm, 1 μm and 10 μm there was approximately a 60 % reduction in the uptake of [3H]choline, suggesting that cholinergic nerve endings were mainly responsible for [3H]choline uptake. At 0.1 mm concentrations of [3H]choline, there was only a 25 % reduction of choline uptake, suggesting that at higher concentrations of choline there was more nonspecific uptake. The uptake of radiolabelled tryptophan, glutamate and GABA were only slightly or not at all affected by the lesions. There was a significant reduction of uptake of radiolabelled serotonin and norepinephrine, since known monoaminergic tracts were disrupted. Choline uptake was reduced only in brain regions in which cholinergic input was interrupted (i.e. the cerebral cortex and hippocampus) and remained unchanged in other regions (i.e. the cerebellum and striatum). The time course of the reduction in choline uptake was similar to that of the reductions in ChAc activity and endogenous ACh levels; there was no decrease at 1 day, a significant decrease at 2 days, and the maximal decrease at 4 days postlesion. There was a close correlation among choline uptake, ChAc activity and ACh levels in the four brain regions examined (i.e. the striatum, cerebral cortex, hippocampus and cerebellum). Our results suggest that when hippocampal synaptosomes (and perhaps synaptosomes from other brain areas as well) are incubated in the presence of choline, at concentrations of 10 μm m or lower, then cholinergic nerve endings are responsible for the bulk of the choline accumulated by the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号