首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA. However, this activity in vivo is often controlled by the dominance of antisense or other double-stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus (MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalytically active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over the action mechanism of ribozymes in vivo.  相似文献   

2.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

3.
4.
5.
The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs.  相似文献   

6.
The subclass of catalytic RNAs termed ribozymes cleave specific target RNA sequences in vitro. Only circumstantial evidence supports the idea that ribozymes may also act in vivo. In this study, ribozymes with a hammerhead motif directed against a target sequence within the mRNA of the neomycin phosphotransferase gene (npt) were embedded into a functional chimeric gene. Two genes, one containing the ribozyme and the other producing the target, were cotransfected into plant protoplasts. Following in vivo expression, a predefined cleavage product of the target mRNA was detected by ribonuclease protection. Expression of both the ribozyme gene and the target gene was driven by the CaMV 35S promoter. Concomitant with the endonucleolytic cleavage of the target mRNA, a complete reduction of NPT activity was observed. An A to G substitution within the ribozyme domain completely inactivates ribozyme-mediated hydrolysis but still shows a reduction in NPT activity, albeit less pronounced. Therefore, the reduction of NPT activity produced by the active ribozyme is best explained by both hydrolytic cleavage and an antisense effect. However, the mutant ribozyme--target complex was more stable than the wildtype ribozyme--target complex. This may result in an overestimation of the antisense effect contributing to the overall reduction of gene expression.  相似文献   

7.
Two synthetic hammerhead ribozymes, one unmodified and the other with 2"-modifications and four phosphorothioate groups, targeting a single GUA site in the luciferase mRNA, were compared for their inhibition of gene expression in cell cultureand their cellular uptake was also analysed. A HeLa X1/5 cell line stably expressing luciferase, under an inducible promoter, was treated with these ribozymes by liposome-mediated transfection to determine their activity.Luciferase expression in cells was inhibited to approximately 50% with little difference between the unmodified and the 2"-modified ribozyme. A similar degree of inhibition was observed with two catalytically inactive ribozymes, indicating that inhibition was mainly due to an antisense effect. A ribozyme carrying a cholesterol moiety, applied to the cells without carrier, showed no inhibition. Northern blotting indicated a similar amount of cellular uptake of all ribozymes. The unmodified ribozyme was essentially evenly distributed between cytoplasm and nucleus, whereas a higher proportion of the phosphorothioate-containing ribozyme was observed in the nucleus. Fluorescence microscopy, including confocal microscopy using 5"-fluorescein-labelled ribozymes, showed that the unmodified and 2"-modified ribozymes were present in the cytoplasm and in the nucleus to a similar extent, whereas the fluorescence of the phosphorothioate-containing ribozyme was much stronger in the nucleus. Both ribozymes inhibited luciferase expression to a comparable degree, suggesting that the ribozyme in the nucleus did not contribute significantly to the inhibition. Ribozymes with a cholesterol moiety were predominantly trapped in the cell membrane, explaining their inability to interfere with gene expression.  相似文献   

8.
Stathmin is a major cytosolic phosphoprotein that plays an important role in the control of cellular proliferation by regulating the dynamics of the microtubules that make up the mitotic spindle. Because stathmin is expressed at high levels in all human cancers, it is an attractive molecular target for anticancer interventions. We had shown previously that antisense stathmin inhibition results in marked abrogation of the transformed phenotype of leukemic cells in vitro and in vivo. Unlike the antisense approach, ribozymes can catalytically cleave several molecules of target RNA. This may provide a more efficient strategy for downregulating genes, such as stathmin, that are expressed at very high levels in cancer cells. We designed several antistathmin hammerhead ribozymes and tested their cleavage activity against short synthetic stathmin RNA substrates. In vitro cleavage studies demonstrated site-specific cleavage of stathmin RNA that was dependent on ribozyme concentration and duration of exposure to ribozyme. The most active antistathmin ribozyme was capable of cleaving >90% stathmin RNA in a catalytic manner, cleaving multiple substrate molecules per ribozyme molecule. We also demonstrated that the designed antistathmin ribozymes are capable of selectively cleaving native stathmin RNA in a mixture of total RNA isolated from leukemic cells. These antistathmin ribozymes may provide a novel and effective form of gene therapy that may be applicable to a wide variety of human cancers.  相似文献   

9.
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly.  相似文献   

10.
Ribozymes are RNAs that can be designed to catalyze the specific cleavage or ligation of target RNAs. We have explored the possibility of using ribozymes in maize to downregulate the expression of the stearoyl-acyl carrier protein (Delta9) desaturase gene. Based on site accessibility and catalytic activity, several ribozyme constructs were designed and transformed into regenerable maize lines. One of these constructs, a multimer hammerhead ribozyme linked to a selectable marker gene, was shown to increase leaf stearate in two of 13 maize lines. There were concomitant decreases in Delta9 desaturase mRNA and protein. The plants with the altered stearate phenotype were shown to express ribozyme RNA. The ribozyme-mediated trait was heritable, as evidenced by stearate increases in the leaves of the R1 plants derived from a high-stearate line. The increase in stearate correlated with the presence of the ribozyme gene. A catalytically inactive version of this ribozyme did not produce any significant effect in transgenic maize. This is evidence that ribozymes can be used to modulate the expression of endogenous genes in maize.  相似文献   

11.
The previously described HIV-1 directed hammerhead ribozyme 2as-Rz12 can form with its target RNA 2s helices I and III of 128 and 278 base pairs (bp). A series of derivatives was made in which helix III was truncated to 8, 5, 4, 3, and 2 nucleotides (nt). These asymmetric hammerhead ribozymes were tested for in vitro cleavage and for inhibition of HIV-1 replication in human cells. Truncation of helix III to 8 bp did not affect the in vitro cleavage potential of the parental catalytic antisense RNA 2as-Rz12. Further truncation of helix III led to decreased cleavage rates, with no measurable cleavage activity for the 2 bp construct. All catalytically active constructs showed complex cleavage kinetics. Three kinetic subpopulations of ribozyme-substrate complexes could be discriminated that were cleaved with fast or slow rates or not at all. Gel purification of preformed ribozyme-substrate complexes led to a significant increase in cleavage rates. However, the complex cleavage pattern remained. In mammalian cells, the helix III-truncated constructs showed the same but no increased inhibitory effect of the comparable antisense RNA on HIV-1 replication.  相似文献   

12.
The overproduction of the cytokine TNF-alpha is associated with inflammatory and autoimmune diseases. We have developed a means to block TNF-alpha production with ribozymes directed against TNF-alpha mRNA to selectively inhibit its production in vitro and in vivo. Following cationic lipid-mediated delivery to peritoneal murine macrophages in culture, anti-TNF-alpha ribozymes were more effective inhibitors of TNF-alpha secretion than catalytically inactive ribozyme controls. Inhibition of TNF-alpha secretion was proportional to the concentration of ribozyme administered, with an IC50 of approximately 10 nM. After i.p. injection of cationic lipid/ribozyme complexes, elicited macrophages accumulated approximately 6% of the administered ribozyme. The catalytically active ribozyme suppressed LPS-stimulated TNF-alpha secretion by approximately 50% relative to an inactive ribozyme control without inhibiting secretion of another proinflammatory cytokine produced by macrophages, IL-1alpha. Ribozyme-specific TNF-alpha mRNA degradation products were found among the mRNA extracted from macrophages following in vivo ribozyme treatment and ex vivo stimulation. Thus, catalytic ribozymes can accumulate in appropriate target cells in vivo; once in the target cell, ribozymes can be potent inhibitors of specific gene expression.  相似文献   

13.
Ribozyme as an approach for growth suppression of human pancreatic cancer   总被引:11,自引:0,他引:11  
Ribozymes (catalytic RNAs, RNA enzymes) are effective modulators of gene expression because of their simple structure, site-specific cleavage activity, and catalytic potential, and have potentially important implications for cancer gene therapy. Point mutations in the K-ras oncogene are found in approx 90% of human pancreatic carcinomas, and can be used as potential targets for specific ribozyme-mediated reversal of the malignant phenotype. In this study, we focused on in vitro manipulation of ribozyme targeting of the mutated K-ras oncogene in a human pancreatic carcinoma cell line. We evaluated the efficacy of an anti-K-ras hammerhead ribozyme targeted against GUU-mutated codon 12 of the K-ras gene in cultured pancreatic carcinoma cell lines. The anti-K-ras ribozyme significantly reduced cellular K-ras mRNA level (GUU-mutated codon 12) when the ribozyme was transfected into the Capan-1 pancreatic carcinoma cells. The ribozyme inhibited proliferation of the transfected Capan-1 cells. These results suggested that this ribozyme is capable of reversing the malignant phenotype in human pancreatic carcinoma cells.  相似文献   

14.
Recently, Breaker and coworkers engineered hammerhead ribozymes that rearrange from a catalytically inactive to an active conformation upon allosteric binding of a specific ligand. To monitor cleavage activity in real time, we have coupled a donor-acceptor fluorophore pair to the termini of the substrate RNA of such a hammerhead ribozyme, modified to cleave in trans in the presence of the bronchodilator theophylline. In the intact substrate, the fluorophores interact by fluorescence resonance energy transfer (FRET). The specific FRET signal breaks down as the effector ligand binds, the substrate is cleaved, and the products dissociate, with a rate constant dependent on the concentration of the ligand. Our biosensor cleaves substrate at 0.46 min(-1) in 1 mM theophylline and 0.04 min(-1) without effector, and discriminates against caffeine, a structural relative of theophylline. We have measured the theophylline-dependence profile of this biosensor, showing that concentrations as low as 1 microM can be distinguished from background. To probe the mechanism of allosteric regulation, a single nucleotide in the communication domain between the catalytic and ligand-binding domains was mutated to destabilize the inactive conformation of the ribozyme. As predicted, this mutant shows the same activity (0.3 min(-1)) in the presence and absence of theophylline. Additionally, time-resolved FRET measurements on the biosensor ribozyme in complex with a noncleavable substrate analog reveal no significant changes in fluorophore distance distribution upon binding of effector.  相似文献   

15.
Canny MD  Jucker FM  Pardi A 《Biochemistry》2007,46(12):3826-3834
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme.  相似文献   

16.
Several catalytic antisense RNAs directed against different regions of the genomic or antigenomic RNA of Sendai virus were constructed. All RNAs contained the same catalytic domain based on hammerhead ribozymes but some had deletions or mutations resulting in imperfect helices I and III. Pre-annealed substrate/ribozyme complexes were used to determine the rates of the cleavage process for the different ribozymes under single-turnover conditions. It was found that the sequence context surrounding the cleavable motif influenced the cleavage efficiencies. Deletions or mutations of nucleotides 2.1 or 15.1 and 15.2 according to the numbering system for hammerhead ribozymes of Hertel et al. destroyed catalytic activity. Deletions of nucleotide 2.2 or additional nucleotides in the helix I-forming region of the ribozyme did not destruct, but only reduced the cleavage efficiencies. Similar results were observed for a deletion of nucleotide 15.3. Simultaneous deletions within helices I and III resulted in alternative cleavage sites. The potential consequences for the specificity of the ribozyme reaction are discussed.  相似文献   

17.
We obtained a partial sequence of mouse calretinin mRNA from cDNA clones, and designed hammerhead ribozymes to cleave positions within it. With a view to optimising hammerhead ribozymes for eliminating the mRNA in vivo, we varied the length and sequence of the three duplex 'arms' and measured the cleavage of long RNA substrates in vitro at 37 degrees C (as well as 50 degrees C). Precise cleavage occurred, but it could only go to completion with a large excess of ribozyme. The evidence suggests that the rate-limiting step with a large target is not the cleavage, but the formation of the active ribozyme: substrate complex. The efficiency varied unpredictably according to the target site, the length of the substrate RNA, and the length of the ribozyme; secondary structure in vitro may be responsible. We particularly investigated the degree of sequence-specificity. Some mismatches could be tolerated, but shortening of the total basepairing with the substrate to less than 14 bp drastically reduced activity, implying that interaction with weakly-matched RNAs is unlikely to be a serious problem in vivo. These results suggest that specific and complete cleavage of a mRNA in vivo should be possible, given high-level expression of a ribozyme against a favourable target site.  相似文献   

18.
19.
20.
Proliferation of injured smooth muscle cells contributes to the reocclusion or restenosis of coronary arteries that often occurs following angioplasty procedures. We have identified and optimized nuclease-resistant ribozymes that efficiently cleave c-myb RNA. Three ribozymes targeting different sites in the c-myb mRNA were synthesized chemically and delivered to rat aortic smooth muscle cells with cationic lipids; all three inhibited serum-stimulated cell proliferation significantly. RNA molecules with two base substitutions in the catalytic core that render the ribozyme catalytically inactive had little effect on smooth muscle cell proliferation. Ribozymes with scrambled binding arm sequences also failed to affect cell cycle progression of vascular smooth muscle cells. Furthermore, inhibition of rat smooth muscle cell proliferation correlated with a reduction in intact c-myb mRNA. Efficacy of the chemically-modified ribozyme was compared directly to phosphorothioate antisense oligodeoxynucleotides targeting the same site in the c-myb RNA; the ribozyme had superior efficacy and showed greater specificity than the antisense molecules. Exogenously delivered ribozymes also inhibited porcine and human smooth muscle cell proliferation effectively. Ribozymes targeting c-myb or other regulators of smooth muscle cell proliferation may represent novel therapeutics for the treatment of restenosis after coronary angioplasty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号