首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nematode Caenorhabditis elegans has a simple nervous system with glia restricted primarily to sensory organs. Some of the activities that would be provided by glia in the mammalian nervous system are either absent or provided by non-glial cell types in C. elegans, with only a select set of mammalian glial activities being similarly provided by specialized glial cells in this animal. These observations suggest that ancestral roles of glia may be to modulate neuronal morphology and neuronal sensitivity in sensory organs.  相似文献   

2.
3.
Glial cells are the most abundant cells in the human brain and have long been considered as passive supporting cells for neurons. In contrast to the extensive studies on various neuronal functions in the nervous system, we still have limited knowledge about glial cells. Recently a number of pioneering studies have provided convincing evidence that glia play active roles in development and function of the central nervous system. This review discusses recent advances in our understanding of the molecular mechanisms underlying glial cell differentiation. We then highlight some of the novel findings about glial function, i.e. the role of glia in synaptogenesis and the intricate relationship between astrocytes and adult neural stem cells. Finally, we summarize the emerging studies that implicate abnormalities in the formation or maintenance of glia leading to severe brain diseases, such as Alexander disease, glioblastoma and multiple sclerosis, and potential therapeutic strategies to tackle these diseases.  相似文献   

4.
Plasticity of synaptic transmission is believed to be the cellular basis for learning and memory, and depends upon different pre- and post-synaptic neuronal mechanisms. Recently, however, an increasing number of studies have implicated a third element in plasticity; the perisynaptic glial cell. Originally glial cells were thought to be important for metabolic maintenance and support of the nervous system. However, work in the past decade has clearly demonstrated active involvement of glia in stability and overall nervous system function as well as synaptic plasticity. Through specific modulation of glial cell function, a wide variety of roles for glia in synaptic plasticity have been uncovered. Furthermore, interesting circumstantial evidence suggests a glial involvement in multiple other types of plasticity. We will discuss recent advances in neuron-glial interactions that take place during synaptic plasticity and explore different plasticity phenomena in which glial cells may be involved.  相似文献   

5.
The nervous system consists of neurons and glial cells. Neurons generate and propagate electrical and chemical signals, whereas glia function mainly to modulate neuron function and signaling. Just as there are many different kinds of neurons with different roles, there are also many types of glia that perform diverse functions. For example, glia make myelin; modulate synapse formation, function, and elimination; regulate blood flow and metabolism; and maintain ionic and water homeostasis to name only a few. Although proteomic approaches have been used extensively to understand neurons, the same cannot be said for glia. Importantly, like neurons, glial cells have unique protein compositions that reflect their diverse functions, and these compositions can change depending on activity or disease. Here, I discuss the major classes and functions of glial cells in the central and peripheral nervous systems. I describe proteomic approaches that have been used to investigate glial cell function and composition and the experimental limitations faced by investigators working with glia.The nervous system is composed of neurons and glial cells that function together to create complex behaviors. Traditionally, glia have been considered to be merely passive contributors to brain function, resulting in a pronounced neurocentric bias among neuroscientists. Some of this bias reflects a paucity of knowledge and tools available to study glia. However, this view is rapidly changing as new tools, model systems (culture and genetic), and technologies have permitted investigators to show that glia actively sculpt and modulate neuronal properties and functions in many ways. Glia have been thought to outnumber neurons by 10:1, although more recent studies suggest the ratio in the human brain is closer to 1:1 with region-specific differences (1). There are many different types of glia, some of which are specific to the central nervous system (CNS),1 whereas others are found only in the peripheral nervous system (PNS). The main types of CNS glia include astrocytes, oligodendrocytes, ependymal cells, radial glia, and microglia. In the PNS, the main glial cells are Schwann cells, satellite cells, and enteric glia. These cells differ and are classified according to their morphologies, distinct anatomical locations in the nervous system, functions, developmental origins, and unique molecular compositions. Among the different classes of glia there are additional subclasses that reflect further degrees of specialization. In this review, I will discuss the characteristics and functions of the major glial cell types including astrocytes, microglia, and the myelin-forming oligodendrocytes (CNS) and Schwann cells (PNS). Because of space limitations, it is impossible to give a complete accounting of all glia and what is known about each of these cell types. Therefore, I encourage the interested reader to refer to some of the many excellent reviews referenced below that focus on individual glial cell types. Finally, I will discuss proteomic studies of glial cell function and some of the unique challenges investigators face when working with these cells.  相似文献   

6.
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. During development, a variety of reciprocal signaling interactions between glia and neurons dictate all parts of nervous system development. Glia may provide attractive, repulsive, or contact-mediated cues to steer neuronal growth cones and ensure that neurons find their appropriate synaptic targets. In fact, both neurons and glia may act as migrational substrates for one another at different times during development. Also, the exchange of trophic signals between glia and neurons is essential for the proper bundling, fasciculation, and ensheathement of axons as well as the differentiation and survival of both cell types. The growing number of links between glial malfunction and human disease has generated great interest in glial biology. Because of its relative simplicity and the many molecular genetic tools available, Drosophila is an excellent model organism for studying glial development. This review will outline the roles of glia and their interactions with neurons in the embryonic nervous system of the fly.  相似文献   

7.
Glia from many diverse organisms play a number of important roles during the development of the nervous system. Therefore, knowing the molecules that control glial cell function will further our understanding of the mechanisms that control nervous system development. We have isolated a novel gene in Drosophila melanogaster that is expressed in a subset of the peripheral glia. We call this gene "Fire exit" (Fie), as the glia that express this gene do so during a time when they mark the entry and exit point of axons at the CNS/PNS boundary. This subset of peripheral glia act as intermediate targets during pathfinding and migration of the sensory axons in particular. Fire exit has been cloned and found to encode a novel transmembrane protein. Fire exit belongs to a group of proteins identified in the Drosophila melanogaster and Anopheles gambiae databases which contain four predicted transmembrane domains and a shared intracellular motif. Mutations that remove the fire exit protein have no obvious disruption to glial function. On the other hand, glia expressing the Fire exit gene bridge the transition zone between CNS and PNS and play a role in sensory axon guidance. Therefore, it appears that, while the glia that express this protein mediate axon guidance, Fire exit itself plays a nonessential part in this function. A role for Fire exit in glial development may be suggested by its evolutionary relationship to a family of lysosome-associated proteins called LAPTMs and suggests that Fire exit may function in intracellular transport during glial development.  相似文献   

8.
Glial cells play a wide range of essential roles in both nervous system development and function and has been reviewed recently (Parker and Auld, 2006). Glia provide an insulating sheath, either form or direct the formation of the blood-brain barrier, contribute to ion and metabolite homeostasis and provide guidance cues. Glial function often depends on the ability of glial cells to migrate toward specific locations during nervous system development. Work in nervous system development in insects, in particular in the fruit fly Drosophila melanogaster and the tobacco hornworm Manduca sexta, has provided significant insight into the roles of glia, although the molecular mechanisms underlying glial cell migration are being determined only now. Indeed, many of the processes and mechanisms discovered in these simpler systems have direct parallels in the development of vertebrate nervous systems. In this review, we first examine the developmental contexts in which invertebrate glial cell migration has been observed, we next discuss the characterized molecules required for proper glial cell migration, and we finally discuss future goals to be addressed in the study of glial cell development.  相似文献   

9.
Mounting evidence demonstrates that glial cells might have important roles in regulating the physiology and behavior of adult animals. We summarize some of this evidence here, with an emphasis on the roles of glia of the differentiated nervous system in controlling neuronal excitability, behavior and plasticity. In the review we highlight studies in Drosophila and discuss results from the analysis of mammalian astrocytes that demonstrate roles for glia in the adult nervous system.  相似文献   

10.
Glial cells are major components of the nervous system. The roles of these cells are not fully understood, however. We have now identified a secreted protein, designated Meteorin, that is expressed in undifferentiated neural progenitors and in the astrocyte lineage, including radial glia. Meteorin selectively promoted astrocyte formation from mouse cerebrocortical neurospheres in differentiation culture, whereas it induced cerebellar astrocytes to become radial glia. Meteorin also induced axonal extension in small and intermediate neurons of sensory ganglia by activating nearby satellite glia. These observations suggest that Meteorin plays important roles in both glial cell differentiation and axonal network formation during neurogenesis.  相似文献   

11.
12.
Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator.  相似文献   

13.
Kaplow ME  Korayem AH  Venkatesh TR 《Genetics》2008,178(4):2003-2016
Glia mediate a vast array of cellular processes and are critical for nervous system development and function. Despite their immense importance in neurobiology, glia remain understudied and the molecular mechanisms that direct their differentiation are poorly understood. Rap/Fzr is the Drosophila homolog of the mammalian Cdh1, a regulatory subunit of the anaphase-promoting complex/cyclosome (APC/C). APC/C is an E3 ubiquitin ligase complex well characterized for its role in cell cycle progression. In this study, we have uncovered a novel cellular role for Rap/Fzr. Loss of rap/fzr function leads to a marked increase in the number of glia in the nervous system of third instar larvae. Conversely, ectopic expression of UAS-rap/fzr, driven by repo-GAL4, results in the drastic reduction of glia. Data from clonal analyses using the MARCM technique show that Rap/Fzr regulates the differentiation of surface glia in the developing larval nervous system. Our genetic and biochemical data further indicate that Rap/Fzr regulates glial differentiation through its interaction with Loco, a regulator of G-protein signaling (RGS) protein and a known effector of glia specification. We propose that Rap/Fzr targets Loco for ubiquitination, thereby regulating glial differentiation in the developing nervous system.  相似文献   

14.
Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line.  相似文献   

15.
16.
Here we take advantage of the well-characterized and simple nervous system of Caenorhabditis elegans to further our understanding of the functions of RNA editing. We describe the two C.elegans ADAR genes, adr-1 and adr-2, and characterize strains containing homozygous deletions in each, or both, of these genes. We find that adr-1 is expressed in most, if not all, cells of the C.elegans nervous system and also in the developing vulva. Using chemotaxis assays, we show that both ADARs are important for normal behavior. Biochemical, molecular and phenotypic analyses indicate that ADR-1 and ADR-2 have distinct roles in C.elegans, but sometimes act together.  相似文献   

17.
The roles of glia and polyamines (PA) in brain function and dysfunction are highlighted in this review. We emphasize that PA accumulation preferentially in glia, but not in neurons, is clearly evolutionarily determined; it is found throughout the brain, retina, peripheral nervous system, and in glial-neuronal co-cultures of multiple species, including man. This phenomenon raises key questions: (i) What are the mechanisms that underlie such uneven distribution, accumulation and release from glia? (ii) What are the consequences of PA fluxes within the brain on neuronal function? (iii) What are the roles of PAs in brain disorders and diseases? This review includes suggestions on the roles of PAs, such as putrescine (PT), spermidine (SPD), spermine (SPM) and their derivatives as novel glio-transmitters in brain since PA affect many neuronal and glial receptors, channels and transporters. Polyamines hitherto have been neglected, although it is evident that these molecules are key elements for normal brain function and their metabolic disorders, apparently, cause the development of many pathological syndromes and diseases. The study of endogenous PA allows one to put forward the basic principles of scientific research on glio-neuronal interactions and clinical therapies, which are based on the exclusivity of glial cells in terms of accumulation of PA and PA-dependent functions.  相似文献   

18.
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.  相似文献   

19.
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.  相似文献   

20.
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types – astrocytes, microglia, and oligodendrocytes – across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号