首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Previous studies have indicated that a single enzyme, "kynureninase," catalyzes the reactions of l-kynurenine to anthranilate and l-3-hydroxykynurenine to 3-hydroxyanthranilate in Neurospora crassa and in other organisms. The present report describes separate enzymes which catalyze these reactions in N. crassa. The first, a kynureninase, preferentially catalyzes kynurenine to anthranilate and is induced over 400-fold by tryptophan or a catabolite of tryptophan. The second, a hydroxykynureninase, is constitutive or noninducible by tryptophan and preferentially catalyzes l-3-hydroxykynurenine to 3-hydroxyanthranilate. The physiological significance of these enzymes may be inferred from the facts that (i) the noninducible enzyme hydroxykynureninase appears to be the main enzyme present in uninduced cells that is capable of catalyzing l-3-hydroxykynurenine to 3-hydroxyanthranilate for the indispensible synthesis of nicotinamide adenine dinucleotide, and (ii) the inducible enzyme kynureninase is induced by tryptophan to a concentration far in excess of that needed to meet the requirements of the cells for nicotinamide adenine dinucleotide, resulting in the excretion of anthranilate into the medium.  相似文献   

2.
Kynureninase-type (L-kynurenine hydrolase, EC 3.7.1.3) activity has been found to be present in the livers of fish, amphibia, reptiles, and birds. In addition to past information concerning this enzyme activity in mammalian liver, it is now clear that all the major classes of vertebrates carry a highly specialized kynureninase-type enzyme, which we have termed a hydroxykynureninase. To compare the reactivities of these enzymes with L-kynurenine and L-3-hydroxykynurenine, ratios of tau values (Km/V) were used. Based on this comparison, the bacterium Pseudomonas fluorescens carries the most efficient kynureninase, whereas the amphibian Xenopus laevis has the most efficient hydroxykynureniase. In these two cases, the ratio of tau values differs by a factor of 38 000. It is hypothesized that the tryptophan-to-nicotinamide adenine dinucleotide biosynthetic pathway evolved from a catabolic system of enzymes, and that the differences observed in the kynureninase-type enzymes between lower and higher organisms reflect the specialization of the function of these enzymes from a strictly catabolic role to an anabolic one during the course of evolution.  相似文献   

3.
Two kynureninase activities are known in Neurospora crassa, one of which (kynureninase I) is inducible, the other (kynureninase II) being constitutive. A method is described for the isolation of low-kynureninase mutants of N. crassa. When grown on an inducer, the mutants show significantly less kynureninase I activity compared with wild type, whereas constitutive kynureninase II activity is unaffected. Since a low level of kynureninase I activity remains in the mutants examined, the mutations may be in a regulatory gene or genes. Other experiments are described concerning the molecular weights of the two enzymes and the intracellular localization and specificity of kynureninase II.  相似文献   

4.
A kynureninase-type enzyme was isolated from adult mouse liver. With kynurenine as the substrate, this enzyme has a Km of 300 μM; when the substrate is hydroxykynurenine, the Km is 6 μM. We conclude that this enzyme is an hydroxykynureninase. No enzyme which we could characterize as a kynureninase was found in this preparation. This suggests that tryptophan metabolism in the mouse occurs primarily through pathways that use hydroxykynurenine rather than kynurenine. Preliminary studies indicate that the enzyme is inhibited by its reaction product, hydroxyanthranilate, which is an intermediate in the synthesis of NAD. Such control of the hydroxykynureninase reaction may be of physiological importance in regulating the synthesis of NAD and/or in preventing the accumulation of hydroxyanthranilate, a putative carcinogen.  相似文献   

5.
Two types of kynureninase were isolated from Neurospora crassa IFO 6068. The formation of one of them, which was separated from the inducible kynureninase by DEAE-cellulose chromatography, was independent of the presence of tryptophan in the growth medium. Ouchterlony double-diffusion analysis and immunochemical titration indicated that the constitutive-type enzyme is immunologically different from the inducible enzyme. We confirmed by a selective assay method with antiserum that the addition of tryptophan to the medium does not affect the formation of one of the enzymes (constitutive-type). The constitutive kynureninase was purified approximately 650-fold and was free of the inducible enzyme as judged by analytical gel electrophoresis. The molecular weight and optimum pH values of both enzymes are very similar. However, the constitutive enzyme shows much higher activity and affinity for L-3-hydroxykynurenine than for L-kynurenine, suggesting that the enzyme functions biosynthetically as a 3-hydroxykynureninase. Constitutive kynureninase activities were widely found in all the fungi tested, whereas the inducible enzyme activity was not present in Mucor or Rhizopus species. The inducible enzymes of all the Neurospora strains examined were shown to be immunologically identical.  相似文献   

6.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

7.
Saccharomyces cerevisiae anthranilate synthase:indole-3-glycerol phosphate synthase is a multifunctional hetero-oligomeric enzyme encoded by genes TRP2 and TRP3. TRP2, encoding anthranilate synthase Component I, was cloned by complementation of a yeast trp2 mutant. The nucleotide sequence of TRP2 as well as that of TRP3 were determined. The deduced anthranilate synthase Component I primary structure from yeast exhibits only limited similarity to that of the corresponding Escherichia coli subunit encoded by trpE. On the other hand, yeast anthranilate synthase Component II and indole-3-glycerol phosphate synthase amino acid sequences from TRP3 are clearly homologous with the corresponding sequences of the E. coli trpG and trpC polypeptide segments and thereby establish the bifunctional structure of TRP3 protein. Based on comparisons of TRP3 amino acid sequence with homologous sequences from E. coli and Neurospora crassa, an 11-amino acid residue connecting segment was identified which fuses the trpG and trpC functions of the bifunctional TRP3 protein chain. These comparisons support the conclusion that the amino acid sequence of connectors in homologous multifunctional enzymes need not be conserved. Connector function is thus not dependent on a specific sequence. Nuclease S1 mapping was used to identify mRNA 5' termini. Heterogeneous 5' termini were found for both TRP2 and TRP3 mRNA. TRP2 and TRP3 5'-flanking regions were analyzed for sequences that might function in regulation of these genes by the S. cerevisiae general amino acid control system. The 9 base pair direct repeat (Hinnebusch, A.G., and Fink, G.R. (1983) J. Biol. Chem. 258, 5238-5247) and inverted repeats were identified in the 5'-flanking sequences of TRP2 and TRP3.  相似文献   

8.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

9.
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suc 0 and N. crassa inv strains transformed with p NC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suc 0 ( p NC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa , although S. cerevisiae suc + did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI -restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.  相似文献   

10.
11.
The inducible kynureninase from Neurospora crassa is inactivated by incubation with L-alanine or L-ornithine. The inactivated enzyme is resolved to the apoenzyme by dialysis. Reactivation of the apoenzyme is achieved by incubation with pyridoxamine 5'-phosphate plus pyruvate, as well as with pyridoxal 5'-phosphate. The kynurenine hydrolysis proceeds linearly in the presence of added pyridoxal 5'-phosphate, or pyridoxamine 5'-phosphate plus pyruvate. These findings indicate that the fungal inducible kynureninase can act as an amino-transferase to control the enzyme activity, and that the control mechanism is similar to that reported for the bacterial kynureninase (Moriguchi, M. & Soda, K. (1973) Biochemistry 12, 2974-2980). The ratio of kynureninase activity to aminotransferase activity was determined with bacterial and fungal enzymes. All the inducible kynureninases from various fungal species examined are also controlled by the transamination. In contrast, the pig liver kynureninase and the fungal constitutive enzymes are little or not at all affected by preincubation with amino acids. Thus, the present regulatory mechanism does not operate in these constitutive-type enzymes. The rate of hydrolysis of L-3-hydroxykynurenine by the pig liver enzyme decreases with increase in the incubation time; the enzyme is inhibited by 3-hydroxyanthranilate produced from L-3-hydroxykynurenine. The inhibition is found in all the constitutive-type enzymes, suggesting that 3-hydroxyanthranilate plays a regulatory role in NAD biosynthesis from tryptophan.  相似文献   

12.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

13.
Centrifugation in sucrose density gradients of partially purified extracts from six species of fungi, i.e., Rhizopus stolonifer, Phycomyces nitens, Absidia glauca (Phycomycetes), Aspergillus nidulans (Ascomycetes), Coprinus lagopus, and Ustilago maydis (Basidiomycetes), indicate that the five enzymes catalyzing steps two to six in the prechorismic acid part of the polyaromatic synthetic pathway sediment together. The sedimentation coefficients for these enzymes are very similar in the six species and are comparable to those previously observed for the multienzyme complexes (arom aggregates) of Neurospora crassa and Saccharomyces cerevisiae. These results are interpreted as indicating the presence in each of these fungi of arom aggregates, presumably encoded by arom gene clusters similar to those in N. crassa and S. cerevisiae. Evidence has also been obtained for the presence in two species (A. nidulans and U. maydis) and the absence in the other four species of a second dehydroquinase isozyme which is distinguishable from the synthetic activity on the basis of both thermostability tests and S values. This second dehydroquinase, which is apparently involved in the catabolism of quinic acid via a pathway similar to that in N. crassa, is inducible in A. nidulans (as it is in N. crassa), but constitutive in U. maydis. These comparative findings are discussed in relation to the organization, evolution, and possible functional relationships of synthetic and catabolic aromatic pathways in fungi.  相似文献   

14.
Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae has been purified to homogeneity from an overproducing strain. Analytical ultracentrifugation demonstrated that the enzyme is a dimer of Mr = 83,000 +/- 4,000 (S20.w = 4.7 S). Moreover, as shown by active enzyme sedimentation, the enzyme remains dimeric even at low concentrations. The presence of yeast phosphoribosylanthranilate isomerase in the gradient does not lead to complex formation between the two enzymes as might be expected if phosphoribosyl anthranilate, the very labile product of the anthranilate phosphoribosyltransferase, were channelled to phosphoribosylanthranilate isomerase in vivo. The steady-state-kinetic behaviour of the enzyme suggests that catalysis involves a ternary enzyme-substrate complex, with KANTm = 1.6 microM, and KPRib-PPm = 22.4 microM. The enzyme has been used to generate phosphoribosylanthranilate in situ for kinetic studies of phosphoribosylanthranilate isomerase from Escherichia coli: KPRAm = 5 microM, kcat = 40 s-1.  相似文献   

15.
The in vivo regulation of intermediate reactions in the pathway of tryptophan synthesis in Neurospora crassa was examined in a double mutant (tr-2, tr-3) which lacks the functions of the first and last enzymes in the pathway from chorismic acid to tryptophan. The double mutant can convert anthranilic acid to indole and indole-3-glycerol, and the production of these indolyl compounds by germinated conidia was used to estimate the activity of the intermediate enzymes in the pathway. Indole-synthesizing activity was maximal in germinated conidia obtained from cultures in which the levels of l-tryptophan were growth-limiting; the formation of this activity was markedly repressed when the levels of l-tryptophan exceeded those required for maximal growth. d-, 5-methyl-dl-, and 6-methyl-dl-tryptophan were less effective than l-tryptophan, and 4-methyl-dl-tryptophan, tryptamine, and indole-3-acetic acid were ineffective in repressing the formation of indole-synthesizing activity; anthranilic acid stimulated the formation of indole-synthesizing activity. Preformed indole-synthesizing activity was strongly and specifically inhibited by low levels of l-tryptophan; several related compounds were ineffective as inhibitors. These results suggest that, in addition to repression, an end product feedback inhibition mechanism is operative on an intermediate enzyme(s) in tryptophan biosynthesis. The relation of these results to other in vivo and in vitro studies and to general aspects of the regulation of tryptophan biosynthesis in N. crassa are discussed.  相似文献   

16.
The kynureninase-type enzymes of three fungi and one bacterium were isolated and examined kinetically for their ability to catalyze the hydrolysis of L-kynurenine and L-3-hydroxykynurenine. The phycomycete Rhizopus stolonifer was found to contain a single, constitutive enzyme with Km for L-3-hydroxykynurenine and L-kynurenine of 6.67 times 10-minus 6 and 2.5 times 10-minus 4 M, respectively. The ascomycetes Aspergillus niger and Penicillium roqueforti each contain an enzyme, induced by L-tryptophan, with similar Km for L-3-hydroxykynurenine and L-kynurenine ranging from 5.9 times 10-minus 5 to 14.3 times 10-minus 5 M, as well as a constitutive enzyme with Km for the two substrates of similar to 4 times 10-minus 6 M and 10-minus 4 M. The bacterium Pseudomonas fluorescens has a single, inducible enzyme with Km for L-3-hydroxykynurenine and L-kynurenine of 5 times 10-minus 4 and 7 times 10-minus 5 M. In addition, significant differences in maximal velocities (Vmax) were observed in two cases. The Vmax of the inducible activity from P. fluorescens was 4.5 times greater for L-kynurenine than L-3-hydroxykynurenine, whereas the Vmax of the constitutive activity from R. stolonifer was 2.5 times greater for L-3-hydroxykynurenine. It is concluded (i) that the constitutive activities are hydroxykynureninases involved in the biosynthesis of nicotinamide adenine dinucleotide from L-tryptophan, (ii) that the inducible activities are kynureninases involved in the catabolism of L-tryptophan to anthranilate, and (iii) that R. stolonifer and P. fluorescens, respectively, carry the most specific examples of each type of enzyme.  相似文献   

17.
A large number of Ca2+ -signaling proteins have been previously identified and characterized in Saccharomyces cerevisiae but relatively few have been discovered in filamentous fungi. In this study, a detailed, comparative genomic analysis of Ca2+ -signaling proteins in Neurospora crassa, Magnaporthe grisea, and S. cerevisiae has been made. Our BLAST analysis identified 48, 42, and 40 Ca2+ -signaling proteins in N. crassa, M. grisea, and S. cerevisiae, respectively. In N. crassa, M. grisea, and S. cerevisiae, 79, 100, and 13% of these proteins, respectively, were previously unknown. For N. crassa, M. grisea, and S. cerevisiae, respectively, we have identified: three Ca2+ -permeable channels in each species; 9, 12, and 5 Ca2+/cation-ATPases; eight, six, and four Ca2+ -exchangers; four, four, and two phospholipase C's; one calmodulin in each species; and 23, 21, and 29 Ca2+/calmodulin-regulated proteins. Homologs of a number of key proteins involved in the release of Ca2+ from intracellular stores, and in the sensing of extracellular Ca2+, in animal and plant cells, were not identified. The greater complexity of the Ca2+ -signaling machinery in N. crassa and M. grisea over that in S. cerevisiae probably reflects their more complex cellular organization and behavior, and the greater range of external signals which filamentous fungi have to respond to in their natural habitats. To complement the data presented in this paper, a comprehensive web-based database resource (http://www.fungalcell.org/fdf/) of all Ca2+ -signaling proteins identified in N. crassa, M. grisea, and S. cerevisiae has been provided.  相似文献   

18.
The inheritance of mtDNA in lager brewing strains   总被引:1,自引:0,他引:1  
In this work, we compared the mtDNA of a number of interspecific Saccharomyces hybrids (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces bayanus) to the mtDNA of 22 lager brewing strains that are thought to be the result of a natural hybridization between S. cerevisiae and another Saccharomyces yeast, possibly belonging to the species S. bayanus. We detected that in hybrids constructed in vitro, the mtDNA could be inherited from either parental strain. Conversely, in the lager strains tested, the mtDNA was never of the S. cerevisiae type. Moreover, the nucleotide sequence of lager brewing strains COXII gene was identical to S. bayanus strain NBRC 1948 COXII gene. MtDNA restriction analysis carried out with three enzymes confirmed this finding. However, restriction analysis with a fourth enzyme (AvaI) provided restriction patterns for lager strains that differed from those of S. bayanus strain NBRC 1948. Our results raise the hypothesis that the human-driven selection carried out on existing lager yeasts has favored only those bearing optimal fermentation characteristics at low temperatures, which harbor the mtDNA of S. bayanus.  相似文献   

19.
Chorismate synthase (CS) catalyses the conversion of 5- enol pyruvylshikimate 3-phosphate (EPSP) to form chorismate, which is the last common intermediate in the synthesis of the three aromatic amino acids phenylalanine, tyrosine and tryptophan. Despite the overall redox-neutral reaction, catalysis has an absolute requirement for reduced flavin. In the fungus Neurospora crassa , a flavin reductase (FR) activity able to generate reduced flavin mononucleotide in the presence of NADPH is an intrinsic feature of a bifunctional CS. In all bacterial and plant species investigated to date, purified CSs lack an FR activity and are correspondingly 8–10 kDa smaller than the N. crassa CS (on the basis of SDS–PAGE). The cloning of N. crassa CS and subsequent characterization of the purified heterologously expressed enzyme indicates that, surprisingly, the FR probably resides within a region conserved amongst both mono- and bifunctional CSs and is not related to non-homologous sequences which contribute to the larger molecular mass of the N. crassa CS. This information directed this work towards the smaller Saccharomyces cerevisiae CS, the sequence of which was known, although the protein has not been extensively characterized biochemically. Here the characterization of the S. cerevisiae CS is reported in more detail and it is shown that the protein is also bifunctional. With this knowledge, S. cerevisiae could be used as a genetic system for studying the physiological consequences of bifunctionality. The phylogenetic relationship amongst known CSs is discussed.  相似文献   

20.
A specific and sensitive fluorometric assay for tryptophan oxygenase   总被引:1,自引:0,他引:1  
A spectrophotofluorometric assay was used to measure tryptophan oxygenase activity in several species. The fluorescent assay depends on the conversion of the product of the reaction, N-formyl-l-kynurenine, to anthranilate by means of the coupling enzymes kynurenine formamidase and kynureninase. These enzymes are easily obtained from l-tryptophan-induced N. crassa; and the product, anthranilate, is readily separated by organic extraction from other tryptophan catabolites and easily identified fluorometrically. With this assay, tryptophan oxygenase has been demonstrated in vitro for the first time in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号