首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver ribosomes prepared in low salt buffer contain basic and acidic proteins not found on ribosomes washed in high salt buffer. Proteins extracted from liver ribosomes by 500 mM KCL were characterized by acid urea-polyacrylamide gel electrophoresis, sodium dodecyl sulfate - polyacrylamide gel electrophoresis and gel isoelectric focusing. The salt-solubilized proteins contain 12 polypeptides with a molecular weight over 67000, several polypeptides with molecular weights less than 67 000, and three polypeptides whose molecular weight exceeded 130 000. Ten to 12 of the proteins were basic, and about 24 acidic proteins were partially or wholly extracted from the ribosomes. Four of the acidic proteins have isoelectric points less than 4.5.  相似文献   

2.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

3.
We have devised a general protein fractionation procedure which selects for eukaryotic DNA-binding proteins, some of which resemble DNA-unwinding proteins from prokaryotes. Proteins were selected which (a) pass through a native DNA-cellulose column, (b) bind to a denatured DNA-cellulose column, and (c) remain bound to the latter column during a rinse with a dilute solution of the sodium salt of the polyanion dextran sulfate. When this fractionation was applied to the soluble proteins fo calf thymus, three major protein species were recovered. The predominant one has an apparent molecular weight of about 24,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is isoelectric near neutrality, and elutes as a monomer from denatured DNA-cellulose at moderate NaCl concentrations. This protein, designated calf-unwinding protein 1 (UP1), has been purified to homogeneity. However, isoelectric focusing reveals four or five subspecies (apparently separated by single-charge differences) which differ appreciably in their affinities for DNA. Two other major proteins are obtained which have apparent molecular weights in sodium dodecyl sulfate of 33,000: the first, which elutes with low salt from DNA-cellulose as a homogeneous preparation, appears to be a basic protein (although it is clearly not a histone); the other, which elutes from DNA-cellulose as the major component of a "high salt eluting fraction," is an acidic protein which co-purifies with less prominent species of higher molecular weights. Proteins similar to each of these three major calf thymus proteins have been observed by us and others in tissue culture cells of mouse, hamster, monkey, and humans, suggesting their wide occurrence among eukaryotes.  相似文献   

4.
A group of proteins migrating to the anode at pH 8.6 under polyacrylamide gel electrophoresis was revealed in the total protein of non-dissociated KCl-washed pea seed ribosomes. No proteins with an isoelectric point below pH 4.2 Were found. The presence of acidic proteins in 80 S ribosomes is due to the presence of a specific set of relatively acidic proteins in the total protein of large (5 major and 10 minor components) and small (2 major and 4 minor components) subunits. The mostly acidic proteins are located in the large subunit. The acidic proteins of 60S and 40S subunits are represented by the polypeptide chains with molecular weights from 48 000 to 13 000. The acidic proteins are present in the ribosomes studied in considerably less number than the basic proteins, and the former produce a very weak staining under electrophoretic analysis as compared with the latter. The data obtained suggest that 80S ribosomes of higher plants differ from animal ribosomes by a higher content of relatively acidic proteins.  相似文献   

5.
DNA polymerase was extracted from HeLa cell mitochondria with high salt concentrations (1M) and Nonidet-P 40 (0.2%). Subsequently the enzyme was purified stepwise by DEAE-cellulose-, phosphocellulose-, hydroxyapatite-Ultrogel-, DNA-cellulose chromatography and preparative polyacrylamide gel electrophoresis. The purified enzyme exhibited a molecular weight between 100 000 – 110 000 and was devoid of endonuclease activity. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of this enzyme preparation revealed two protein bands suggesting that the mitochondrial DNA polymerase might consist of two subunits with the molecular weights of 45 000 and 60 000.  相似文献   

6.
Cell lines 3T3B (mouse), 3T3B-SV40, BHK21 (hamster) and BHK21 polyoma virus (PyY) were labelled with [35S]methionine under conditions in which 500–600 cpm were incorporated per cell during a 20 h incubation period. Two-dimensional gel electrophoresis analysis of the total [35S]methionine-labelled polypeptides from 200–300 cells followed by fluorography revealed about 500 acidic (isoelectric focusing, IEF) and 150 basic polypeptides (non-equilibrium pH gradient electrophoresis, NEPHGE) whose position could be reproducibly assessed. Counting of 33 abundant acidic polypeptides present in both 3T3B and 3T3B-SV40 revealed significant changes in the relative proportion of ten of them. Seven, including the subunit of the 100 Å filaments ‘fibroblast type’ (55K) (1.1% in 3T3B; 0.6% in 3T3B-SV40), three cytoarchitectural proteins and three soluble proteins, corresponded to a decrease of 40% or more in the radioactivity of the spots in transformed cells, and only in three cases was there a significant increase in radioactivity of polypeptides in 3T3B-SV40 cells. Among the polypeptides that show less than 40% variation we have identified total actin (42K) (13% of total label in 3T3B; 10% in 3T3B-SV40), α- and β-tubulin (55K) (1.6% of total label in 3T3B; 2% in 3T3B-SV40), eleven polypeptides present in Triton skeletons, and nine soluble proteins. We have also observed 25 obvious changes in polypeptide intensities (16 acidic and 9 basic) but these were not quantitated. Only three polypeptides were found in transformed cells that were not detected in normal cells. One of these corresponded to the large T antigen and the other two to Triton-soluble proteins of a molecular weight in the range of 52–54K. Similar quantitative studies on the hamster BHK21/BHK21PyY pair confirmed at least the major observations made in 3T3B and 3T3B-SV40.  相似文献   

7.
Synthesis of cytoplasmic DNA-binding proteins was investigated after a shift from the nonpermissive to the permissive temperature in NRK cells transformed by a temperature-sensitive mutant of Rous sarcoma virus [ts339(RSV)]. Cells were labeled for several generations in [3H]leucine and were pulse-labeled with [35S]methionine for 1 h at the nonpermissive temperature (39 degrees C) and at the permissive temperature (33 degrees C, 5 h after shift from 39 degrees C). Proteins binding to sequential columns of double-stranded and single-stranded DNA-cellulose were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and the 35S/3H ratios were obtained for each column fraction and for individual polypeptides. The protein fractions binding to single-stranded, but not double-stranded, DNA and eluting at high salt concentrations (greater than 0.60 M NaCl) showed elevated 35S/3H ratios. This indicated increased synthesis of these proteins within 5 h after the onset of transformation. The majority of the polypeptides in these fractions showed increased synthesis as a consequence of transformation. One prominent polypeptide among them constituted 0.1% of the cytosol protein and had a molecular weight of 93,000. We conclude that the synthesis of proteins binding tightly to single-stranded DNA is increased early after the onset of transformation.  相似文献   

8.
Accumulation of heat shock proteins in field-grown cotton   总被引:13,自引:8,他引:5       下载免费PDF全文
Cotton (Gossypium hirsutum L.) plants grown under field water deficits exhibited an 80 to 85% reduction in leaf area index, plant height, and dry matter accumulation compared with irrigated controls. Midday photosynthetic rates of dryland plants decreased 2-fold, and canopy temperatures increased to 40°C at 80 days after planting compared with canopy temperatures of 30°C for irrigated plants. Leaves from dryland plants which had exhibited canopy temperatures of 40°C for several weeks accumulated stainable levels of polypeptides with apparent molecular weights of 100, 94, 89, 75, 60, 58, 37, and 21 kilodaltons. These polypeptides did not accumulate in leaves from irrigated plants.

Addition of [35S]methionine to leaves of growth chamber-grown cotton plants and subsequent incubation at 40°C for 3 hours radiolabeled polypeptides with molecular weights similar to those that accumulate in dryland cotton leaves. These data suggest that the proteins which accumulate in water-stressed cotton leaves at elevated temperatures (40°C) are heat shock proteins and that these proteins can accumulate to substantial levels in field-stressed plants.

  相似文献   

9.
(1) Poly(A)-containing mRNAs from total polysomal RNA of regenerating rat liver were incubated with [3H]leucine in a wheat germ cell-free system. Ribosomal proteins were purified as described previously [1], and with two-dimensional gel electrophoresis. The proteins on the gel except for less basic protein had appreciable radioactivity, whereas the surrounding areas had very low radioactivity. Acetic acid-soluble proteins labeled in this system were subjected to three-dimensional gel electrophoresis [2]. Except for L1 and L2 proteins, each of the ribosomal proteins, including less basic ones, showed a major radioactive peak coinciding with the protein band on SDS gel. Thus, the wheat germ cell-free system completely translates almost all mRNAs for individual ribosomal proteins. Equimolar amounts of almost all ribosomal proteins were synthesized in the presence of the saturating concentration of mRNAs. (2) Free polysomes from regenerating rat liver were fractionated into three sizes. Each class of polysomes was incubated with [3H]leucine. Ribosomal proteins with molecular weights of 40 000 to 21 000 were mainly synthesized by Fraction B (5-14 monomeric ribosomes), L1 and L2 [2] with 60 000 and 54 000, by Fraction C (greater than 15 monomeric ribosomes) and B, and ribosomal proteins smaller than 20 000 by Fractions A (less than pentamer) and B. (3) mRNAs from rat liver total polysomes were fractionated into seven classes by size and each was translated in the wheat germ extract. Ribosomal proteins with molecular weights of 54 000 to 30 000 were mainly synthesized by mRNAs of 12 to 14.5 S, ribosomal proteins of 35 000 to 22 000 by those of 9.5 to 12 S, ribosomal proteins of 22 000 to 13 000 by those of 7 to 9.5 S, and smaller ribosomal proteins by those smaller than 7 S. These results indicate that individual ribosomal proteins are synthesized by monocistronic mRNAs, the lengths of which are proportional to the molecular weights of the corresponding ribosomal proteins.  相似文献   

10.
Structural proteins of active 60-S and 40-S subunits of rat liver ribosomes were analysed by two-dimensional polyacrylamide gel electrophoresis. 35 and 29 spots were shown on two-dimensional gel electrophoresis of proteins from large and small subunits, respectively. It was noted that the migration distances of stained proteins with Amido black 10B remained unchanged in the following sodium dodecyl sulfate-acrylamide gel electrophoresis, although some minor degradation and/or aggregation products were observed in the case of several ribosomal proteins, especially of those with high molecular weights. This finding made it possible to measure the molecular weight of each ribosomal protein in the spot on two-dimensional gel electrophoresis by following sodium dodecyl sulfate-acrylamide gel electrophoresis. The molecular weights of the protein components of two liver ribosomal subunits were determined by this 'three-dimensional' polyacrylamide gel electrophoresis. The molecular weights of proteins of 40-S subunits ranged from 10 000 to 38 000 and the number average molecular weight was 23 000. The molecular weights of proteins of 60-S subunits ranged from 10 000 to 60 000 and the number average molecular weight was 23 900.  相似文献   

11.
One- and two-dimensional gel electrophoresis were employed to characterise the proteins derived from the ribosomes of the thermophilic fungusThermomyces lanuginosus. Approximately 32 (29 basic and 3 acidic) and 45 (43 basic and 2 acidic) protein spots were resolved fromTh. lanuginosus small and large ribosomal subunits, respectively. The molecular weight of the small subunit proteins ranged from 9,800–36,000 Da with a number average molecular weight of 20,300 Da. The molecular weight range for the large subunit proteins was 12,000–48,500 Da with a number average molecular weight of 25,900 Da. Most proteins appeared to be present in unimolar amounts. These data are comparable with but not identical to those from other eukaryotic ribosomes. The sensitivities of the ribosomal proteins to increasing concentrations of NH4Cl were also evaluated by two-dimensional gel electrophoresis. Most ribosomal proteins were gradually released over a wide range of salt concentrations but some were preferentially enriched in one or two salt conditions.  相似文献   

12.
Quantitative analysis of the protein composition of yeast ribosomes   总被引:4,自引:0,他引:4  
The molecular weights of the individual yeast ribosomal proteins were determined. The ribosomal proteins from the 40-S subunit have molecular weights ranging from 11 800 to 31 000 (average molecular weight = 21 300). The molecular weights of the 60-S subunit proteins range from 10 000 to 48 400 (average molecular weight = 21 800). Stoichiometric measurements, performed by densitometric scanning on ribosomal proteins extracted from high-salt dissociated subunits revealed that isolated ribosomal subunits contain, besides some protein species occurring in submolar amounts, a number of protein species which are present in multiple copies: S13, S27, L22, L31, L33, L34 and L39. The mass fractions of the ribosomal proteins which were found to be present on isolated ribosomes in non-unimolar amounts, were re-examined by using an isotope dilution technique. Applying this method to proteins extracted from mildely isolated 80-S ribosomes, we found that some protein species such as S32, S34 and L43 still are present in submolar amounts. On the other hand, however, we conclude that some other ribosomal proteins, in particular the strongly acidic proteins L44 and L45 get partially lost during ribosome dissociation. Proteins L44/L45 appears to be present on 80-S ribosomes in three copies.  相似文献   

13.
The protein composition of the envelope fraction of Pseudomonas BAL-31 was studied by polyacrylamide gel electrophoresis. Two major polypeptides of molecular weights 130 000 and 110 000 were found. These two polypeptides, which account for as much as 40–50% of the total protein of the envelope, are associated with the outer membrane. One of these proteins might be a glycoprotein. The inner membrane contains a more heterogeneous collection of smaller polypeptides.  相似文献   

14.
The isolation of deoxyribonucleic acid (DNA)-binding proteins from various stages of growth and sporulation of Bacillus subtilis is described. After adsorption and elution from phosphocellulose, the proteins were fractionated according to their ability to adsorb to denatured calf thymus DNA-cellulose or native B. subtilis DNA-cellulose. The proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and purification was monitored by a nitrocellulose filter binding assay. Approximately 1% of the proteins in the crude extract adsorbed to denatured calf thymus DNA-cellulose and 0.1% adsorbed to native B. subtilis DNA-cellulose. Each class of proteins varied qualitatively and quantitatively as sporulation proceeded. Several proteins from the exponential phase of growth that bound to denatured DNA were lost by T(0), whereas at T(5) new polypeptides appeared. Fewer changes in the profile of proteins with affinity for native DNA were observed between exponential phase and T(0); however, the dominant species in these eluates were clearly different.  相似文献   

15.
Exposure of cells to UV light of sufficient intensity brings about cross-linking of RNA to proteins which are in direct contact with it in vivo. The major [35S]methionine-labeled proteins which become cross-linked to polyadenylated heterogeneous nuclear RNA in HeLa cells have molecular weights of 120,000 (120K), 68K, 53K, 43K, 41K, 38K, and 36K. Purified complexes of polyadenylated RNA with proteins obtained by UV cross-linking in intact cells were used to immunize mice and generate monoclonal antibodies to several of these proteins. Some properties of three of the proteins, 41K, 43K, and 120K, were characterized with these antibodies. The 41K and 43K polypeptides are highly related. They were recognized by the same antibody (2B12) and have identical isoelectric points (pl = 6.0 +/- 0.2) but different partial peptide maps. The 41K and 43K polypeptides were part of the 40S heterogeneous nuclear ribonucleoprotein particle and appear to correspond to the previously described C proteins (Beyer et al., Cell II:127-138, 1977). A different monoclonal antibody (3G6) defined a new major heterogeneous ribonucleoprotein of 120K. The 41K, 43K, and 120K polypeptides were associated in vivo with both polyadenylated and non-polyadenylated nuclear RNA, and all three proteins were phosphorylated. The monoclonal antibodies recognized similar proteins in human and monkey cells but not in several other vertebrates. Immunofluorescence microscopy demonstrated that these proteins are segregated to the nucleus, where they are part of a fine particulate nonnucleolar structure. In cells extracted in situ with nonionic detergent, all of the 41K and 43K polypeptides were associated with the nucleus at salt concentrations up to 0.5 M NaCl, whereas the 120K polypeptide was completely extracted at this NaCl concentration. A substantial fraction of the 41K and 43K polypeptides (up to 40%) was retained with a nuclear matrix--a structure which is resistant to digestion with DNase I and to extraction by 2 M NaCl, but the 41K and 43K polypeptides were quantitatively removed at 0.5 M NaCl after digestion with RNase.  相似文献   

16.
A group of DNA-binding proteins from the soluble extract of newborn rat epidermis have been separated by chromatography using DNA-cellulose columns. The electrophoretogram of the DNA-binding proteins eluted from a single stranded DNA-cellulose column shows five major proteins of molecular weights ranging between 25K to 40K. Both the epidermal protein filaggrin and most keratins, except two high molecular weight keratins, do not show in vitro DNA-binding activity.  相似文献   

17.
The acidic and basic subunits are the main constituents of soybean 11S globulin. Each of these two subunits consists of three major polypeptides of similar size. The molecular weights of the acidic and basic subunits have been previously estimated to be 37,000 and 22,000, respectively, by SDS-polyacrylamide gel electrophoresis (Catsimpoolas et al, J. Set Food. Agric., 22, 448 (1971)). Reevaluation of the molecular weights by 6 m guanidine gel chromatography gave the values of 28,000 and 18,000, respectively. These are supported by results of equilibrium sedimentation in the same solvent. The previously reported values seem to have been overestimated, especially for the acidic subunits. The overestimations seem to be related to the high percentage of acidic amino acids, which causes the conformation of the SDS-protein polypeptide complexes of these subunits to deviate from those of proteins usually employed as standards for molecular weight estimations.  相似文献   

18.
Separation and characterization of oat globulin polypeptides   总被引:1,自引:0,他引:1  
The storage globulin of oat seeds was separated into its acidic (α) and basic (β) polypeptides by ion-exchange chromatography in 6 m urea and further characterized by several electrophoretic techniques. Molecular weights of the α and β polypeptides were 32,500–37,500 and 22,000–24,000, respectively. The unreduced protein existed as disulfide-linked αβ species of molecular weight 53,000–58,000. Isoelectric points were approximately 5.9–7.2 (α) and 8.7–9.2 (β). Two-dimensional electrophoresis showed considerable heterogeneity within both groups of polypeptides. More complete amino acid analyses of the globulin and its polypeptides are presented along with a proposed structure of the native protein based on previous and present data. Similarities were noted between the oat globulin and the legumin (11 S) class of storage proteins in certain legumes.  相似文献   

19.
We have used DNA-cellulose chromatography to isolate single-strand binding proteins from Tetrahymena thermophila. Three major proteins which bind to denatured DNA-cellulose were obtained. The predominant protein has a molecular weight of 20 000 in sodium dodecyl sulfate - polyacrylamide gel electrophoresis and possesses many of the properties of the helix destabilizing proteins isolated from prokaryotic and eukaryotic sources. The protein facilitates denaturation of the synthetic copolymer poly[d(A-T).d(A-T)], depressing the melting temperature by nearly 40 degrees C. It also permits the renaturation of poly[d(A-T)].d(A-T)] in high salt concentration. Two other binding proteins have molecular weight of 25 000 and 23 000 in sodium dodecyl sulfate - polyacrylamide gel electrophoresis. The protein with a molecular weight of 25 000 is probably the "M protein" previously isolated from Tetrahymena thermophila which has been shown to stimulate Tetrahymena DNA polymerase. These two proteins failed to show helix destabilizing, DNA dependent ATPase, or deoxyribonuclease activities. These three proteins are abundant in the cell with approximately 1.0 x 10(6) to 10.0 x 10(6) molecules of each protein monomer per cell. One molecule of each protein monomer binds to 7 to 10 nucleotides as detected by a nitrocellulose filter binding assay. Peptide mapping of the three proteins suggests that they are all distinct. We have also found that the binding proteins can interact with Tetrahymena DNA polymerase and some other proteins to form an enzyme complex, a putative replication complex.  相似文献   

20.
The ribosomal proteins from 40 S and 60 S subunits of rabbit reticulocytes were separated by two-dimensional polyacrylamide gel electrophoresis. The protein spots stained with Coomassie brilliant blue were cut out and the proteins were extracted. The material extracted from each spot was mixed with proteins of known molecular weight and then analyzed by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. Both the total number and the molecular weights of each of the proteins were determined by these procedures. Thirty-two proteins were identified in the 40 S subunits; their molecular weights ranged from 8000 to 39,000 (average mol. wt = 25,000). Thirty-nine proteins were identified in the 60 S subunit; their molecular weights ranged from 9000 to 58,000 (average mol. wt = 31,000). The sum of the molecular weights of the individual proteins from each subunit is in agreement with previous estimations, derived from physico-chemical measurements of the total protein in mammalian ribosomal subunits. The molecular weight distribution obtained for the isolated proteins was nearly identical to that derived from spectrophotometric analysis of polyacrylamide-sodium dodecyl sulfate gels of the total protein mixtures from each subunit stained with Coomassie brilliant blue. The results are consistent with the hypothesis that reticulocyte ribosomes contain one copy of most of their protein constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号