首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular studies of DiGeorge syndrome.   总被引:9,自引:2,他引:7       下载免费PDF全文
DiGeorge Syndrome (DGS) is often associated with loss of a portion of the proximal long arm of chromosome 22. Using a probe for the D22S9 locus, we have examined DNA from eight DGS cell lines and from one balanced-translocation carrier parent of a DGS proband. The D22S9 locus is deleted in four DGS patients, with deletion of 22pter----q11 because of unbalanced translocation. The locus is not deleted from three DGS probands with normal chromosomes or from two DGS probands with interstitial deletions of 22q11. The interstitial deletion DGS probands are also heterozygous for D22S43, another proximal 22q11 locus. This suggests that D22S9 and D22S43 are in a flanking but not critical region for DGS. One of the interstitial deletion DGS probands is monosomic for BCRL2 but has two copies of the flanking BCRL4 and BCR loci. Thus, the region critical to DGS (DGCR) may be in proximity to the BCRL2 locus.  相似文献   

2.
3.
Clinical and molecular diagnosis of Miller-Dieker syndrome.   总被引:1,自引:0,他引:1       下载免费PDF全文
We report results of clinical, cytogenetic, and molecular studies in 27 patients with Miller-Dieker syndrome (MDS) from 25 families. All had severe type I lissencephaly with grossly normal cerebellum and a distinctive facial appearance consisting of prominent forehead, bitemporal hollowing, short nose with upturned nares, protuberant upper lip, thin vermilion border, and small jaw. Several other abnormalities, especially growth deficiency, were frequent but not constant. Chromosome analysis showed deletion of band 17p13 in 14 of 25 MDS probands. RFLP and somatic cell hybrid studies using probes from the 17p13.3 region including pYNZ22 (D17S5), pYNH37 (D17S28), and p144-D6 (D17S34) detected deletions in 19 of 25 probands tested including seven in whom chromosome analysis was normal. When the cytogenetic and molecular data are combined, deletions were detected in 21 of 25 probands. Parental origin of de novo deletions was determined in 11 patients. Paternal origin occurred in seven and maternal origin in four. Our demonstration of cytogenetic or molecular deletions in 21 of 25 MDS probands proves that deletion of a "critical region" comprising two or more genetic loci within band 17p13.3 is the cause of the MDS phenotype. We suspect that the remaining patients have smaller deletions involving the proposed critical region which are not detected with currently available probes.  相似文献   

4.
Molecular studies have shown microdeletions in region q11 of chromosome 22 in nearly all patients with DiGeorge, velocardiofacial and conotruncal anomaly face syndromes (DGS, VCFS and CTAFS, respectively) and in a high percentage of non-syndromic familial cases of conotruncal defects (CTD). CTD account for roughly a fourth to a third of all non-syndromic congenital heart defects (CHD), thus, 22q11 could harbor a major genetic factor of CHD. We searched for a 22q11 microdeletion in familial cases of non-syndromic CTD. Thirty-six cases of various isolated CTD, that is without history of hypocalcemia, immune deficiency, absent thymus, and dysmorphic appearance, were selected. With 48178, a cosmid probe localized in the smallest deleted region of the DiGeorge critical region (DGCR), we found no deletions by fluorescence in situ hybridization in these 36 affected individuals of 16 families with recurrent CTD. Moreover, D22S264, a microsatellilte localized at the distal part of the largest deleted region, was used to genotype the patients. Thirty-two patients out of 37 were heterozygous and hence not deleted at this locus, whereas 5 were uninformative. In conclusion, there are no large deletions in familial cases of various CTD, whether these defects are identical or not within a family. This result does not rule out other minor anomalies in this chromosomal region.  相似文献   

5.
We have determined the parental origin of the deleted chromosome 22 in 29 cases of DiGeorge syndrome (DGS) using a CA-repeat mapping within the commonly deleted region, and in one other case by using a chromosome 22 short arm heteromorphism. The CA-repeat was informative in 21 out of 29 families studied and the deleted chromosome was of maternal origin in 16 cases (72%). When these data are pooled with recent results from the literature, 24 de novo DGS, velo-cardio-facial syndrome (VCFS) and isolated conotruncal cardiac disease deletions are found to be of maternal origin and 8 of paternal origin, yielding a 2 of 8 with a probability level lower than 0.01. These data, and review of the literature on familial DGS/VCFS and isolated conotruncal cardiopathies suggest that there is a strong tendency for the 22q11.2 deletions to be of maternal origin.  相似文献   

6.
Alagille syndrome (AGS) is a clinically defined disorder characterized by cholestatic liver disease with bile duct paucity, peculiar facies, structural heart defects, vertebral anomalies, and ocular abnormalities. Multiple patients with various cytogenetic abnormalities involving 20p12 have been identified, allowing the assignment of AGS to this region. The presence of interstitial deletions of varying size led to the hypothesis that AGS is a contiguous gene deletion syndrome. This molecular analysis of cytogenetically normal AGS patients was performed in order to test this hypothesis and to refine the localization of the known AGS region. Investigation of inheritance of simple tandem repeat polymorphism alleles in 67 members of 24 cytogenetically normal Alagille families led to the identification of a single submicroscopic deletion. The deletion included loci D20S61, D20S41, D20S186, and D20S188 and presumably intervening uninformative loci D20S189 and D20S27. The six deleted loci are contained in a single YAC of 1.9 Mb. The additional finding of multiple unrelated probands who are heterozygous at each locus demonstrates that microdeletions at known loci within the AGS region are rare in cytogenetically normal patients with this disorder. This suggests that the majority of cases of AGS may be the result of a single gene defect rather than a contiguous gene deletion syndrome.  相似文献   

7.
We have studied seven patients who have chromosome 22q13.3 deletions as revealed by high-resolution cytogenetic analysis. Clinical evaluation of the patients revealed a common phenotype that includes generalized developmental delay, normal or accelerated growth, hypotonia, severe delays in expressive speech, and mild facial dysmorphic features. Dosage analysis using a series of genetically mapped probes showed that the proximal breakpoints of the deletions varied over approximately 13.8 cM, between loci D22S92 and D22S94. The most distally mapped locus, arylsulfatase A (ARSA), was deleted in all seven patients. Therefore, the smallest region of overlap (critical region) extends between locus D22S94 and a region distal to ARSA, a distance of > 25.5 cM.  相似文献   

8.
The genetic linkage map of chromosome 14q32 contains 11 loci which span a distance of more than 60 cM. We have assigned 10 of these loci and the AKT1 proto-oncogene to segments of 14q32, using breakpoints derived from four independent chromosomal deletions or rearrangements. The most telomeric breakpoint was found in a proband (HSC 6) carrying a ring-14 chromosome. HSC 6 is monosomic for the distal part of 14q32, which contains the immunoglobulin heavy-chain locus (IGH), and random markers D14S20, D14S19, and D14S23. Two other chromosomal breakpoints, found in probands HSC 121 and HSC 981, could not be distinguished from each other using DNA probes, although the cytogenetic breakpoints appeared to be different at 14q32.32 and 14q32.31, respectively. The region between the breakpoints of HSC 6 and HSC 121 contains AKT1, D14S1, D14S17, and D14S16. The entire telomeric band 14q32 is assumed to contain about 10% of chromosome 14, or approximately 10 Mb. The 8 most telomeric loci, including D14S1, map to 14q32.32-qter, which measures only several megabases. However, these loci span a genetic distance of 23 cM. The high recombination frequency contrasts with the observation that two of the gamma genes in the IGH constant region show a high degree of linkage disequilibrium, though 180 kb apart. This finding suggests that a telomeric localization per se does not lead to a higher recombination frequency and favors the hypothesis that the higher recombination frequency at the telomeres may be due to specific "hot spots" for recombination.  相似文献   

9.
Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
To identify the loci associated with progression of cervical carcinoma, chromosome 6 regions were tested for loss of heterozygosity. Detailed analysis with 28 microsatellite markers revealed a high frequency of allelic deletions for several loci of the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16-21, 6q23-24, 6q25, 6q27) arms of chromosome 6. Examination of 37 microdissected carcinoma and 22 cervical dysplasia specimens revealed allelic deletions from the HLA class I-III genes (6p22-21.3) and subtelomeric locus 6p25 were found in more than 40% dysplasia specimens. With multiple microdissection of cryosections, genetic heterogeneity of squamous cervical carcinoma was analyzed, and clonal and subclonal allelic deletions from chromosome 6 were identified. Half of the tumors had clonal allelic deletion of D6S273 (6p21.3), which is in a Ly6G6D (MEGT1) intron in the HLA class III gene locus. The frequency of allelic deletions from the chromosome 6 long arm was no more than 20% in dysplasias. Allelic deletions from two loci, 6q14 and 6q16-21, were for the first time associated with invasion and metastasis in cervical carcinoma.  相似文献   

11.
Conotruncal defects (CTDs) of the heart are a frequent component of DiGeorge, velocardiofacial, or other syndromes caused by deletions of the human chromosome 22q11 region (HSA22q11). In addition, some human patients with isolated nonsyndromic CTDs have been reported to have deletions of this region. Taken together, these findings lead to the conclusion that deletions of an HSA22q11 locus or loci produce abnormalities in cardiac development leading to CTDs. A spontaneous model of isolated inherited conotruncal malformations occurs in the keeshond dog. We have previously shown in experimental matings that nonsyndromic CTDs in the keeshond are inherited in a manner consistent with a major underlying locus. In the studies described in this article we tested two hypotheses: (1) the region of HSA22q11 commonly deleted in DiGeorge and related syndromes is evolutionarily conserved in the dog, and (2) a locus in this region is linked to hereditary CTD in the keeshond. Two loci within the minimal DiGeorge critical region (MDGCR) and two loci that lie telomeric to the MDGCR, one of which is commonly deleted in DiGeorge patients, were mapped in the dog using a combination of linkage analysis and fluorescence in situ hybridization (FISH). The results confirm conserved synteny of the loci DGS-I, CTP, D22S788 (N41), and IGLC on the telomeric end of canine chromosome 26 (CFA26). The group of four syntenic gene loci, which spans a genetic distance of 2.5 cM is the first to be mapped to this small acrocentric canine chromosome and adds gene-associated polymorphic markers to the developing dog linkage map. Linkage of loci in this region to hereditary CTD in the keeshond was excluded.  相似文献   

12.
Summary Two single-copy DNA sequences, pG24E6.8 (D13S21) detecting a low-frequency MspI RFLP and pG14E1.9 (D13S22) detecting a high-frequency DraI RFLP, have been isolated and cloned from a human chromosome 13-specific phage library and localized at 13q14. Their subband localization was described using a panel of cell lines from patients with different chromosome 13 deletions. A quantitative analysis of hybridization signals was carried out, taking for reference a single-copy DNA sequence from another chromosome. D13S21 and D13S22 were both assigned to q14.1-14.2, which also harbors the genes responsible for retinoblastoma and Wilson disease. The DraI polymorphism detected by pG14E1.9 is a very suitable one for linkage studies in families with either disease.  相似文献   

13.
14.
Patients with deletions in 22q13 are known to have phenotypic features that include normal or accelerated growth, large hands and feet, hypotonia, delayed psychomotor development and mild facial dysmorphism. To date, very few cases have been investigated by detailed molecular genetic analysis. We have analyzed three new patients with terminal deletions in 22q. We compared the cytogenetic observations with molecular data assessed by fluorescence in situ hybridization and an array of characterized bacterial artificial chromosome recombinants. The shortest region of deletion overlap is localized in 22q13.2–qter distal to the marker D22S94, but the telomeric repeat in the deleted chromosome appears to remain intact. When parental alleles were investigated in two of the three patients, the aberrant homolog was found to be of paternal origin in both cases. Although the deleted region still spans >20 cM, molecular analysis of additional patients and screening for new genes might help in elucidating candidate genes connected with the dysmorphisms defined by deletions of 22q13. Received: 14 August 1997 / Accepted: 27 January 1998  相似文献   

15.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

16.
17.
Several groups have reported evidence suggesting linkage of bipolar affective disorder (BPAD) to chromosome 18. We have reported data from 28 pedigrees that showed linkage to marker loci on 18p and to loci 40 cM distant on 18q. Most of the linkage evidence derived from families with affected phenotypes in only the paternal lineage and from marker alleles transmitted on the paternal chromosome. We now report results from a series of 30 new pedigrees (259 individuals) genotyped for 13 polymorphic markers spanning chromosome 18. Subjects were interviewed by a psychiatrist and were diagnosed by highly reliable methods. Genotypes were generated with automated technology and were scored blind to phenotype. Affected sib pairs showed excess allele sharing at the 18q markers D18S541 and D18S38. A parent-of-origin effect was observed, but it was not consistently paternal. No robust evidence of linkage was detected for markers elsewhere on chromosome 18. Multipoint nonparametric linkage analysis in the new sample combined with the original sample of families supports linkage on chromosome 18q, but the susceptibility gene is not well localized.  相似文献   

18.
Summary Six Prader-Willi syndrome (PWS) patients with normal karyotypes and their parents were analyzed to determine the nature of the molecular aberrations present in the proximal region of 15q and to determine the parental origin of the aberrant chromosome 15. In addition, the likehood that uniparental disomy plays a significant role in the etiology of PWS patients with normal karyotypes was studied. Restriction fragment length polymorphisms (RFLPs) recognized by seven probes [pML34 (D15S9), pTD3-21, pCGS0.9, pCGS1.1 (D15S10), IR4.3 (D15S11), IR10.1 (DS15S12), p189-1 (D15S13), IR39 (D15S18), and CMW-1 (D15S24)] mapping to the Prader-Willi chromosome region (PWCR) and an additional two probes [pMS1-14 (D15S1); the cDNA of neuromedin B] mapping elsewhere on chromosome 15 were analyzed in the six PWS patients and their parents. Copy number of each locus within the PWCR was determined by densitometry. Molecular rearrangements of the proximal region of 15q were observed in all of the six probands and the origin of the aberrant chromosome 15 when determined was consistently paternal in origin. While data obtained from our six patients does not support the mechanism of disomy, results obtained from three of the six patients show more complex rearrangements hypothesized to have resulted from somatic recombination. These rearrangements have resulted in acquired homozygosity and the lack of a paternal allele at various loci within the PWCR. The presence of only a maternal contribution at certain loci as the result of somatic recombination may be another mechanism by which genetic imprinting plays a role in the presentation of the PWS phenotype.  相似文献   

19.
Treacher Collins syndrome is an autosomal dominant condition of bilateral craniofacial abnormalities of structures derived from the first and second branchial arches. A patient with severe manifestations of Treacher Collins syndrome and a de novo chromosomal deletion in region 4p15.32----p14 was identified. Anonymous DNA sequences of loci D4S18, D4S19, D4S20, D4S22, and D4S23 were mapped to the deleted region. DNA probes previously mapped to loci on chromosome 4p (D4S10, D4S15, D4S16, D4S26, D4S35, D4S95, D4S144, RAF1P1, QDPR, and HOX7) were not deleted in this patient. Linkage analysis between the D4S18, D4S23, and QDPR loci and Treacher Collins syndrome in eight families excluded the Treacher Collins syndrome locus from the region of the deletion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号