首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two forms of the human granulocyte colony-stimulating factor (G-CSF) receptor (HuG-CSFR), differing only at the carboxyl terminus, were recently identified by cDNA cloning. In this report we show that transfection and subsequent expression of either cDNA clone in the interleukin-3 (IL-3)-dependent murine cell line BAF/BO3 converts the cells to G-CSF-responsiveness. The transfected cells bound HuG-CSF in a manner indistinguishable from the native receptors. Expression of a mutant form of the HuG-CSFR, with a deletion in the cytoplasmic domain, in BAF/BO3 cells failed to convert the cells to HuG-CSF-responsiveness. In a similar manner, expression of these two HuG-CSFRs in the interleukin-6 (IL-6)-dependent murine hybridoma B9 resulted in the ability of these cells to grow in HuG-CSF [corrected]. These results strongly suggest that sequences in the first 96 amino acids of the cytoplasmic domain of the HuG-CSFR are required for signal transduction in response to ligand binding.  相似文献   

2.
Granulocyte colony-stimulating factor is a long-chain cytokine that has both biological and therapeutic applications. It is involved in the production and maturation of neutrophilic progenitor cells and neutrophils and is administered to stimulate the production of white blood cells to reduce the risk of serious infection in immunocompromised patients. We have reengineered granulocyte colony-stimulating factor to improve the thermodynamic stability of the protein, focusing on enhancing the alpha-helical propensity of residues in the antiparallel 4-helix bundle of the protein. These redesigns resulted in proteins with substantially enhanced stability while retaining wild-type levels of biological activity, measured as the ability of the reengineered proteins to stimulate the proliferation of murine myeloid cells transfected with the granulocyte colony-stimulating factor receptor.  相似文献   

3.
Stimulation with granulocyte colony-stimulating factor (G-CSF) induces myeloid precursor cells to differentiate into neutrophils, and tyrosine phosphorylation of certain cellular proteins is crucial to this process. However, the signaling pathways for neutrophil differentiation are still obscure. As the Src-like tyrosine kinase, Lyn, has been reported to play a role in G-CSF-induced proliferation in avian lymphoid cells, we examined its involvement in G-CSF-induced signal transduction in mammalian cells. Expression plasmids for wild-type Lyn (Lyn) and kinase-negative Lyn (LynKN) were introduced into a murine granulocyte precursor cell line, GM-I62M, that can respond to G-CSF with neutrophil differentiation, and cell lines that overexpressed these molecules (GM-Lyn, GM-LynKN) were established. Upon G-CSF stimulation, both the GM-Lyn and GM-LynKN cells began to differentiate into neutrophils, showing early morphological changes within a few days, much more rapidly than did the parental cells, which started to exhibit nuclear lobulation about 10 days after the cells were transferred to G-CSF-containing medium. However, the time course of expression of the myeloperoxidase gene, another neutrophil differentiation marker, was not affected by the overexpression of Lyn or LynKN. Therefore, in normal cells, protein interactions with Lyn, but not its kinase activity, are important for the induction of G-CSF-induced neutrophilic nuclear lobulation in mammalian granulopoiesis.  相似文献   

4.
In a series of studies, we have reported that 1,25-dihydroxyvitamin D (3), a known stimulator of monocytic differentiation, primes bone marrow progenitor cells or promyelocytic HL-60 cells to the actions of several factors involved in both monocytic and granulocytic differentiation. In the present study, we have further examined the combinational effects of 1,25-dihydroxyvitamin D (3) and the other inducer of granulopoiesis, granulocyte colony-stimulating factor, on non-fractionated native murine bone-marrow cell culture. Over 6 days of treatment, human granulocyte colony-stimulating factor sustained cell viability, increased the size of small rounded non-adherent cells, and induced granulocytic differentiation, while 1,25-dihydroxyvitamin D (3) decreased cell viability, promoted the development of large adherent flattened cells, and upregulated some monocytic differentiation markers. Combining these two factors over 6 days synergistically upregulated phagocyte activity, membrane-bound interleukin-1alpha, NAD(P)H oxidase, monocytic Mac-1, and non-specific esterase. Similar effects were observed in successive treatment with granulocyte colony-stimulating factor followed by 1,25-dihydroxyvitamin D (3), but successive treatment in reverse order was somewhat less effective. No combinational treatment upregulated granulocytic lactate dehydrogenase, Gr-1, or chloroacetate esterase to as great an extent as was obtained with granulocyte colony-stimulating factor alone, indicating that granulocytic differentiation is attenuated by addition of 1,25-dihydroxyvitamin D (3). Therefore, in contrast to our previous data, the present findings suggest that granulocyte colony-stimulating factor synergistically augments 1,25-dihydroxyvitamin D (3)-induced monocytic differentiation in our murine bone-marrow cell cultures. Considering previously published data, we also suggest that these synergistic effects may be mainly due to the combination of two distinct effects such as the primary proliferative effects of granulocyte colony-stimulating factor on multipotent stem cells and the subsequent differentiative effects of 1,25-dihydroxyvitamin D (3) on proliferating cells.  相似文献   

5.
Multipotential colony-stimulating factor (Multi-CSF or interleukin-3) was radioiodinated to high specific radioactivity (1-4 X 10(5) cpm/ng) with no detectable loss of biological activity and its binding to murine bone marrow cells and factor-dependent cell lines studied. Both the native glycosylated molecule purified from a cloned T-cell line (LB-3) and the purified non-glycosylated recombinant molecule produced by E. coli could be radioiodinated. Comparative binding studies with these derivatives demonstrated equal binding affinities and equal numbers of binding sites on various cell types indicating that carbohydrate moieties are not involved in the binding interactions. Binding of 125I-Multi-CSF to several factor-dependent continuous hemopoietic cell lines showed the presence of specific receptors on all cell lines, the receptor number per cell varying from 700 to 13,000 and the apparent dissociation constant from 400 pM to 1 nM. Specific binding of 125I-Multi-CSF was also observed to normal murine hemopoietic cells and the binding to murine bone marrow cells was studied in detail. Bone marrow cells showed 117-130 receptors per cell on average and an apparent dissociation constant of 126-233 pM. However, quantitative autoradiographic analysis indicated that receptors for 125I-Multi-CSF were not distributed randomly on bone marrow cells--nucleated erythroid and lymphoid cells were not labeled while essentially all neutrophilic granulocyte, eosinophilic granulocyte and monocytic cells were labeled. Moreover, in each of the labeled cell lineages grain counts (reflecting receptor number) decreased with increasing maturation and a small subpopulation of marrow cells (0.4-1.5% and including blast cells, monocytes, promyelocytes, and myelocytes) exhibited very high grain counts. The existence of such a subset of marrow cells raises the possibility of functional heterogeneity among marrow cells in their response to Multi-CSF.  相似文献   

6.
Neutrophils constitute the first line of host defense against invading microorganisms. Yet their removal from the inflammatory environment is fundamental for injury restraint and resolution of inflammation. Nicotinamide, a component of vitamin B(3), is known to modulate cell survival. In this study, we assessed the influence of nicotinamide on neutrophil apoptosis, both in vitro and in vivo in a mouse model of endotoxin-induced lung inflammation. In vitro, nicotinamide promoted apoptosis of human blood neutrophils in a dose-dependent manner in the presence of the apoptosis inhibitors granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor. The highest concentration of nicotinamide completely neutralized the pro-survival effect of granulocyte (macrophage) colony-stimulating factor. Nicotinamide proapoptotic effect was associated with enhanced caspase-3 activity. In addition, nicotinamide slightly reduced neutrophil chemotaxis in vitro. In vivo, pulmonary nicotinamide delivery decreased the levels of cellular and biochemical inflammation markers and increased the percentage of apoptotic neutrophils in bronchoalveolar lavages. Our findings suggest that nicotinamide is an apoptotic stimulus for neutrophils, thereby contributing to the resolution of neutrophilic inflammation in the lungs.  相似文献   

7.
Oncostatin M is a differentiation factor for myeloid leukemia cells.   总被引:11,自引:0,他引:11  
Oncostatin M (OSM) is a 28-kDa glycoprotein produced by stimulated macrophages and T lymphocytes that inhibits the proliferation of a number of different cell lines derived from solid tumors. Analysis of both amino acid sequence and gene structure has demonstrated that OSM is a member of a cytokine family that includes leukemia inhibitory factor (LIF), IL-6, and granulocyte colony-stimulating factor (G-CSF). We demonstrate that, like LIF, IL-6 and G-CSF, OSM can induce the differentiation of the myeloblastic M1 murine leukemia cells into macrophage-like cells. The morphologic and functional changes induced by OSM are more similar to those observed with LIF and IL-6 than those induced with G-CSF. OSM can also induce the differentiation of the histiocytic U937 human leukemia cells in the presence of granulocyte-macrophage CSF, a property shared with LIF and IL-6. In murine M1 cells, binding of labeled OSM is completely inhibited by excess LIF or OSM, reflecting the binding of OSM to the high affinity form of the murine LIF receptor. In contrast, the binding of labeled OSM to human U937 leukemia cells is inhibited by OSM, but the inhibition by LIF is significantly less. These results suggest that, in human leukemia cells, OSM may act through the LIF receptor and an OSM-specific receptor. The existence of an OSM-specific receptor was confirmed by both growth inhibition and competition binding assays on A375 human melanoma cells. The growth of human A375 cells was inhibited by OSM and IL-6 but not LIF or G-CSF. Neither LIF, G-CSF, nor IL-6 could compete with the binding of labeled OSM to A375 cells.  相似文献   

8.
The binding of granulocyte colony-stimulating factor (G-CSF) to murine bone marrow cells was investigated using a radioiodinated derivative of high specific radioactivity which retained full biological activity. The binding was time- and temperature-dependent, saturable and highly specific. The apparent dissociation constant for the reaction was 60-80 pM at 37 degrees C and 90-110 pM at 4 degrees C, similar to that found for the binding of G-CSF to murine leukemic cells (WEHI-3B D+) and significantly higher than the concentration of G-CSF required to stimulate colony formation in vitro. Autoradiographic analysis confirmed the specificity of binding since granulocytic cells were labeled but lymphocytes, erythroid cells and eosinophils were not. Blast cells and monocytic cells were partially labeled, the latter at low levels. In the neutrophilic granulocyte series, grain counts increased with cell maturity, polymorphs being the most heavily labeled but all cells showed considerable heterogeneity in the degree of labeling. Combination of Scatchard analysis of binding with autoradiographic data indicated that mature granulocytes from murine bone marrow exhibited 50-500 G-CSF receptors per cell.  相似文献   

9.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a glycoprotein required for the proliferation and differentiation of granulocyte and macrophage precursors. Previous investigations have identified regions in human and murine GM-CSF that are required for bioactivity. In the present study, alanine substitution mutagenesis was undertaken to define more precisely specific amino-terminal residues in murine GM-CSF that are involved in bioactivity and receptor binding. Five double alanine mutants were identified that showed at least 10-fold reductions in bioactivity (K14AK20A, K14AE21A, H15AK20A, H15AE21A, K20AE21A). Each of these mutants maintained a normal N-linked glycosylation pattern when expressed in COS-1 cells, suggesting that native polypeptide backbone conformation was preserved. The purified prokaryotic expression products of two mutants (K14AE21A and H15AE21A) had a 100-fold decrease in bioactivity and a decrease in receptor binding, indicating that the side chains of K14, H15, and E21 are required for optimal receptor binding and maximal bioactivity.  相似文献   

10.
The type 1 insulin-like growth factor receptor (IGF-IR) plays an important role in the growth of cells both in vivo and in vitro. The IGF-IR is also capable of inducing differentiation in a number of cell types, raising the question of how the same receptor can send two seemingly contradictory signals, one for growth and one for differentiation. Using 32D cells, which are murine hemopoietic cells, we show that the activated IGF-IR can induce differentiation along the granulocytic pathway in a manner similar to the granulocyte colony-stimulating factor. We find that one of the major substrates of the IGF-IR, the insulin receptor substrate-1 inhibits IGF-I-mediated differentiation of 32D cells. In the absence of insulin receptor substrate-1, functional impairment of another major substrate of the IGF-IR, the Shc proteins, is associated with a decrease in the extent of differentiation. Although the end points of the respective pathways remain to be defined, these results show for the first time that IGF-I-mediated growth or differentiation of hemopoietic cells may depend on a balance between two of its substrates.  相似文献   

11.
Cyclophosphamide is an alkylating antineoplastic agent used in several conditions. However, little is known about the mechanism of its pulmonary toxicity. In the present study, we determined that human lung fibroblasts release activity for neutrophils and monocytes in response to cyclophosphamide in a dose- and time-dependent manner. Checkerboard analysis revealed that both neutrophil and monocyte activities were chemotactic. The release of chemotactic activity was inhibited by lipoxygenase inhibitors and cycloheximide. Molecular-sieve column chromatography revealed that both neutrophil (NCA) and monocyte (MCA) chemotactic activities had multiple peaks. NCA was inhibited by a leukotriene B(4) receptor antagonist and anti-interleukin-8 and anti-granulocyte colony-stimulating factor antibodies. MCA was attenuated by a leukotriene B(4) receptor antagonist and anti-monocyte chemoattractant protein-1 and anti-granulocyte-macrophage colony-stimulating factor antibodies. The concentrations of interleukin-8, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1, and granulocyte-macrophage colony-stimulating factor significantly increased in response to cyclophosphamide. These data suggest that lung fibroblasts may modulate inflammatory cell recruitment into the lung by releasing NCA and MCA in response to cyclophosphamide.  相似文献   

12.
The aim of this study was to construct a fusion protein from the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) and a single-chain Fv fragment (scFv D29) and to investigate its potential to activate cells of the immune system against neuroblastoma cells expressing neural cell adhesion molecule (NCAM). Mammalian cell expression of the scFv D29-GM-CSF fusion protein was compared using a number of vectors, including retroviral and adenoviral vectors. The resultant fusion protein, expressed by HeLa cells, was found by ELISA to bind immobilized recombinant NCAM. Moreover, FACS analysis confirmed binding to the human neuroblastoma cell line SKNBE and a murine neuroblastoma cell line engineered to express the glycosylphosphatidylinositol form of human NCAM (N2A-rKNIE). The fusion protein was also found to stimulate the proliferation of the FDC-P1 haemopoietic cell line, which is dependent on GM-CSF (or interleukin 3) for continued growth. In vitro clonogenic assays indicated that scFv-GM-CSF could selectively induce growth inhibition of SKNBE cells by murine lymphoid cells.  相似文献   

13.
Two cDNAs encoding the receptor for murine granulocyte colony-stimulating factor (G-CSF) were isolated from a CDM8 expression library of mouse myeloid leukemia NFS-60 cells, and their nucleotide sequences were determined. Murine G-CSF receptor expressed in COS cells could bind G-CSF with an affinity and specificity similar to that of the native receptor expressed by mouse NFS-60 cells. The amino acid sequence encoded by the cDNAs has demonstrated that murine G-CSF receptor is an 812 amino acid polypeptide (Mr, 90,814) with a single transmembrane domain. The extracellular domain consists of 601 amino acids with a region of 220 amino acids that shows a remarkable similarity to rat prolactin receptor. The cytoplasmic domain of the G-CSF receptor shows a significant similarity with parts of the cytoplasmic domain of murine interleukin-4 receptor. A 3.7 kb mRNA coding for the G-CSF receptor could be detected in mouse myeloid leukemia NFS-60 and WEHI-3B D+ cells as well as in bone marrow cells.  相似文献   

14.
粒细胞集落刺激因子受体(G-CSFR)在鼠NFS-60细胞中有较高的含量,通过对NFS-60细胞的大规模培养,用CHAPS及超速离心抽提G-CSFR, 经G-CSF亲和层析纯化获得G-CSFR, 采用ABC-ELISA进行鉴定.  相似文献   

15.
To investigate the suppressive effect of recombinant human tumor necrosis factor (rH-TNF) on colony growth of human granulocyte-macrophage progenitor cells (CFU-GM), cytochemical examinations of CFU-GM colonies were performed by a triple staining method. Each colony was classified into five subtypes, and the effects of rH-TNF on each subtype were analyzed. Neutrophil colony growth was inhibited by rH-TNF in a dose-dependent manner, and it was almost completely suppressed at 100 U/ml. In contrast, no significant suppressive effect of rH-TNF was found on the growth of monocyte-macrophage and eosinophil colonies at 100 U/ml or less. When recombinant human granulocyte colony-stimulating factor which almost exclusively stimulates neutrophil colony formation was used as a source of colony-stimulating activity, the total colony growth was almost completely suppressed by 100 U/ml of rH-TNF. These results indicate predominant inhibition of neutrophil colony growth by rH-TNF.  相似文献   

16.
The macrophage-derived neutrophil chemotactic factor (MNCF) is a D-galactose-binding lectin that induces neutrophil migration in vitro and in vivo. Neutrophil recruitment induced by MNCF is resistant to glucocorticoid treatment and is inhibited by the lectin-specific sugar, D-galactose. In the present study, we characterized the binding of MNCF to neutrophils and the responses triggered by this binding. Exposure to MNCF resulted in cell polarization, formation of a lamellipodium, and deep ruffles on the cell surface. By confocal microscopy, we observed that MNCF was evenly distributed on the cell surface after 30 min of incubation. The labeling intensity progressively diminished with longer incubations. Internalization kinetics showed that MNCF/ligand complexes were rapidly internalized, reaching maximum intracellular concentrations at 120 min and then decreased thereafter. The binding and internalization of MNCF were selectively inhibited by D-galactose. MNCF-induced neutrophil chemotaxis was inhibited by pertussis toxin. This fact strongly suggests that the MNCF-ligand on the neutrophil surface is a G-protein-coupled receptor (GPCR), similar to receptors for well-established neutrophil attractants. Our observations on the ability of MNCF to activate neutrophils are consistent with the increasing evidence for the participation of animal lectins in the innate immune response.  相似文献   

17.
18.
Colonies comprised exclusively of neutrophil granulocytes have been obtained by growing mouse bone marrow cells in nutrient semisolid agar cultures. A stimulator of predominantly granulocyte colony formation was present in the breakthrough fraction of preparations of colony-stimulating activity separated on DEAE-Sephadex A. The source of colony-stimulating activity was concentrated conditioned medium of a murine myelomonocytic cell line (WEHI-3), which unfractionated stimulated the growth of colonies of granulocytes, macrophages, megakaryocytes, as well as mixed colony types. After stepwise column chromatography of the conditioned medium, the breakthrough fraction was shown to stimulate predominantly granulocyte colony formation, and the fraction eluted with 1 M NaCl was found to induce primarily macrophage colony growth. Colony morphology was independent of the concentration of eluate used. The morphology of colonies varied with increasing concentrations of the breakthrough fraction. At low concentrations, granulocyte colony formation was almost exclusively observed. With increasing concentrations of this fraction, an increasing proportion of the colonies were found to contain macrophages. The effect of concentration of this activity was in marked contrast to previous findings where the incidence of granulocyte colony formation was inversely related to the concentration of colony-stimulating activity. This differential responsiveness of cell to stimulus has previously been interpreted as low concentrations of a growth and differentiation factor being required for macrophage production and high concentrations of the same factor required for granulocyte formation. Separation of these activities by DEAE Sephadex chromatography, and alteration of the dose-response curve, such that granulocyte colony formation varies directly with the amount of stimulator, indicates that the differentiation of these two cell blood lineages may be controlled by separate entities.  相似文献   

19.
The colony-stimulating factor, CSF-1, selectively stimulates the survival, proliferation, and differentiation of mononuclear phagocytes. The solubilization, assay, and characteristics of the CSF-1 receptor from the J774.2 murine macrophage cell line are described. The recovery of cell-surface receptor in the postnuclear supernatant membrane fraction of hypotonically disrupted cells was 76%. Recovery of the ligand binding activity of the receptor after solubilization of this fraction with 1% Triton X-100 was approximately 150%. The binding of 125I-CSF-1 to intact cells and membrane preparations was consistent with the existence of a single class of high-affinity receptor sites. In contrast, the equilibrium binding of 125I-CSF-1 to the solubilized postnuclear fraction indicated the existence of two distinct classes of binding site (apparent Kds 0.15 nM and 10 nM). A rapid assay was developed for the high-affinity sites, which were shown to be associated with the CSF-1 receptor. The function of the low-affinity sites, which have not been demonstrated on intact cells or cell membranes and which are 13 times more abundant than the high-affinity sites, is unknown. The solubilized high-affinity receptor-CSF-1 complex was stable on storage at 0 degrees C and -70 degrees C but dissociated at 37 degrees C. Dissociation also occurred at 0 degrees C in buffers of low pH (4.0) or high ionic strength (0.7 M NaCl).  相似文献   

20.
Uropathogenic Escherichia coli (UPEC), the causative agent of approximately 85% of urinary tract infections (UTI), is a major health concern primarily affecting women. During infection, neutrophils infiltrate the bladder, but the mechanism of recruitment is not well understood. Here, we investigated the role of UPEC-induced cytokine production in neutrophil recruitment and UTI progression. We first examined the kinetics of cytokine expression during UPEC infection of the bladder, and their contribution to neutrophil recruitment. We found that UPEC infection induces expression of several pro-inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF, CSF-3), not previously known to be involved in the host response to UTI. G-CSF induces neutrophil emigration from the bone marrow; these cells are thought to be critical for bacterial clearance during infection. Upon neutralization of G-CSF during UPEC infection, we found fewer circulating neutrophils, decreased neutrophil infiltration into the bladder and, paradoxically, a decreased bacterial burden in the bladder. However, depletion of G-CSF resulted in a corresponding increase in macrophage-activating cytokines, such as monocyte chemotactic protein-1 (MCP-1, CCL-2) and Il-1beta, which may be key in host response to UPEC infection, potentially resolving the paradoxical decreased bacterial burden. Thus, G-CSF acts in a previously unrecognized role to modulate the host inflammatory response during UPEC infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号