首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have successfully synthesized gold nanoclusters (AuNCs) templated with DNA (5′‐CCCCCCCCCCCCTTTTTT‐3′), and subsequently employed the fluorescent DNA‐AuNCs as a novel probe for sensitive detections of mercury ions (Hg2+). Basically, the procedure is due to the formation of thymidine–Hg2+–thymidine duplexes between DNA‐AuNCs and Hg2+, thus leading to aggregations of DNA‐AuNCs described here occurring, and facilitating their fluorescence decrease. Significantly, this decrease of fluorescent signals permitted sensitive detection of Hg2+ in a linear range of 0.1–100 µmol L?1, with a detection limit of 0.083 µmol L?1 at a signal‐to‐noise ratio of 3. Additionally, the practicality of this probe for assaying Hg2+ in human urine and lake water samples was further validated, and showed various advantages including simplicity, selectivity, sensitivity and low cost, demonstrating its potential to broaden ways for assaying Hg2+ in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, d ‐penicillamine‐functionalized graphene quantum dots (DPA‐GQD) has been synthesized, which significantly increases the fluorescence intensity of GQD. We used this simple fluorescent probe for metal ions detection in human plasma samples. Designed DPA‐GQD respond to Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+ with high sensitivity. The fluorescence intensity of this probe decreased significantly in the presence of metal ions such as, Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+. In this work, a promising probe for ions monitoring was introduced. Moreover, DPA‐GQD probe has been tested in plasma samples. The functionalized DPA‐GQDs exhibits great promise as an alternative to previous fluorescent probes for bio‐labeling, sensing, and other biomedical applications in aqueous solution.  相似文献   

3.
A simple naphthalimide-based fluorescent probe was designed and synthesized for the determination of mercury ion (Hg2+). The probe showed a noticeable fluorescence quenching response for Hg2+. When added with Hg2+, the fluorescence intensity of the probe at 560 nm was remarkably decreased with the color changed from yellow to colorless under ultraviolet (UV) light. The probe had a notable selectivity and sensitivity for Hg2+ and displayed an excellent sensing performance when detecting Hg2+ at low concentration (19.5 nM). The binding phenomenon between the probe and Hg2+ was identified by Job's method and high-resolution mass spectrometry (HRMS). Moreover, the probe was not only utilized to identify Hg2+ in real samples with satisfactory results (92.00%–110.00%) but also was successfully used for bioimaging in cells and zebrafish. The recognition mechanism has been verified by transmission electron microscopy (TEM) for the first time. All the results showed that the probe could be used as a potent useful tool for detection of Hg2+.  相似文献   

4.
The sensitive and reliable detection of Hg2+ and CN as harsh environmental contaminants are of great importance. In view of this, a novel ‘on–off–on’ fluorescent probe based on nitrogen-rich silicon quantum dots (NR-SiQDs) has been designed for sensitive detection of Hg2+ and CN ions in aqueous medium. NR-SiQDs were synthesized using a facile, one-step, and environment friendly procedure in the presence of 3-aminopropyl trimethoxysilane (APTMS) and ascorbic acid (AA) as precursors, with l -asparagine as a nitrogen source for surface modification. The NR-SiQDs exhibited strong fluorescence emission at 450 nm with 42.34% quantum yield, satisfactory salt tolerance, and superior photostability and pH stability. The fluorescence emission was effectively quenched using Hg2+ (turn-off) due to the formation of a nonfluorescent stable NR-SiQDs/Hg2+ complex, whereas after the addition of cyanide ions (CN), Hg2+ ions could be leached from the surface of the NR-SiQDs and the fluorescence emission intensity of the quenched NR-SiQDs fully recovered (turn-on) due to the formation of highly stable [Hg(CN)4]2− species. After optimizing the response conditions, the obtained limits of detection were found to be 53 nM and 0.46 μM for Hg2+ and CN, respectively. Finally, the NR-SiQD-based fluorescence probe was utilized to detect Hg2+ and CN ions in water samples and satisfactory results were obtained, suggesting its potential application for environmental monitoring.  相似文献   

5.
A new ‘naked-eye’ quinoline-based ‘reactive’ ratiometric fluorescent probe was prepared. The reactive stoichiometry of the probe with Hg2+ ion was 2:1. The probe exhibited high selectivity towards Hg2+ ion to other metal ions with a 410-fold increase in absorbance intensity ratio (A402/A340) in aqueous solution over a wide-range pH value (2–12), accompanied by a resonance color change from colorless to pale yellow visible to naked-eye.  相似文献   

6.
Mercury (Hg) is one of the heavy metal pollutants in the environment. Even a very small amount of mercury can cause serious harm to human beings. Herein, we reported a new carbonothioate‐based fluorescent probe for the detection of Hg2+ without interference from other metal ions. This probe possessed a very large Stokes shift (192 nm), which could improve the detection sensitivity by minimizing the interferences resulted from self‐absorption or auto‐fluorescence. With the addition of Hg2+ to the probe solution, considerable fluorescence enhancement was observed. Additionally, the Hg2+ concentration of 0–16 μM and fluorescence intensity showed a good linear relationship (y = 22106× + 53108, R2 = 0.9955). Finally, the proposed probe was used to detect Hg2+ in real water samples, and its result was satisfactory. Therefore, our proposed probe would provide a promising method for the determination of Hg2+ in the environment.  相似文献   

7.
Thiophene‐based diimine (R1) and monoimine (R2) were synthesized in a single step, and their cation binding affinity was tested using colorimetric and UV–vis spectral studies. R1 selectively shows a colorimetric turn‐on response for Pb2+, Hg2+ ions and colorimetric turn‐off with Sn2+ ions, and R2 shows visual response for Cu2+ and Hg2+ over other examined metal ions in aqueous medium. R1 forms 1:1 complex with Pb2+, Hg2+, and Sn2+ and exhibits fluorescence quenching, whereas R2 shows 2:1 complex with Hg2+, Cu2+ and shows fluorescence enhancement. The structural and electronic properties of the sensors and their metal complexes were also investigated using Density Functional Theory calculations. R2 was also successfully demonstrated as a fluorescent probe for detecting Cu2+ ions in living cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A dual‐function fluorescent probe (Probe 1 ) was developed for discriminative detection of Hg2+ and N2H4. Probe 1 could discriminatively detect Hg2+ and N2H4 through two different reaction sites, with the mechanism for Probe 1 for Hg2+ depending on a desulfurization reaction and for N2H4 depending on the Schiff‐base reaction. N2H4 had minimal effect on Hg2+ detection in dimethyl sulfoxide (DMSO)/H2O solution, but Hg2+ could interfere with N2H4 detection in DMSO/buffer solution. Different concentrations of Hg2+ and N2H4 resulted in different blue shades of Probe 1 test strips, and the shade of blue was different with the same concentration of Hg2+ or N2H4, as observed under ultraviolet light at 365 nm wavelength.  相似文献   

9.
A novel multifunctional fluorescent peptide sensor based on pentapeptide dansyl‐Gly‐His‐Gly‐Gly‐Trp‐COOH (D‐P5) was designed and synthesized efficiently using Fmoc solid‐phase peptide synthesis (SPPS). This fluorescent peptide sensor shows selective and sensitive responses to Hg2+ and Cu2+ among 17 metal ions and six anions studied in N‐2‐hydroxyethylpiperazine‐N‐2‐ethane sulfonic acid (HEPES) buffer solution. The peptide probe differentiates Hg2+ and Cu2+ ions by a ‘turn‐on’ response to Hg2+ and a ‘turn‐off’ response to Cu2+. Upon addition of Hg2+ or Cu2+ ions, the sensor displayed an apparent color change that was visible under an ultraviolet lamp to the naked eye. The limits of detection (LOD) of DP‐5 were 25.0 nM for Hg2+ and 85.0 nM for Cu2+; the detection limits for Cu2+ were much lower than the drinking water maximum contaminant levels set out by the United States Environmental Protection Agency (USEPA). It is noteworthy that both D‐P5‐Hg and D‐P5‐Cu systems were also used to detect S2? successfully based on the formation of ternary complexes. The LODs of D‐P5‐Hg and D‐P5‐Cu systems for S2? were 217.0 nM and 380.0 nM, respectively. Furthermore, the binding stoichiometry, binding affinity and pH sensitivity of the probe for Hg2+ and Cu2+ were investigated. This study gives new possibilities for using a short fluorescent peptide sensor for multifunctional detection, especially for anions.  相似文献   

10.
Inorganic mercury ion (Hg2+) has been shown to coordinate to DNA duplexes that feature thymine–thymine (T–T) base pair mismatches. This observation suggests that an Hg2+-induced conformational change in a single-stranded DNA molecule can be used to detect aqueous Hg2+. Here, we have developed an analytical method using surface plasmon resonance (SPR) to develop a highly selective and sensitive detection technique for Hg2+ that takes advantage of T–Hg2+–T coordination chemistry. The general concept used in this approach is that the “turn-on” reaction of a hairpin probe via coordination of Hg2+ by the T–T base pair results in a substantial increase in the SPR response, followed by specific hybridization with a gold nanoparticle probe to amplify the sensor performance. Meanwhile, the limit of detection is 1 nM, which is lower than other recently developed techniques. A linear correlation is observed between the measured SPR reflectivity and the logarithm of the Hg2+ concentration over the concentration range of 5–5000 nM. Additionally, the SPR system provides high selectivity for Hg2+ in the presence of other divalent metal ions up to micromolar concentration levels. The proposed approach is also successfully utilized for the determination of Hg2+ in water samples.  相似文献   

11.
A novel selective and sensitive fluorescence ‘on-off-on’ probe based on tetraphenylethylene (TPE) motif for sequential recognition of Fe3+ and Hg2+ in water has been developed. Especially the complex 6-Fe3+ could behave as a ‘turn on’ fluorescent sensor over a wide-range pH value for detection of Hg2+. The selectivity of this complex for Hg2+ over other heavy and transition metal ions is excellent, and its sensitivity for Hg2+ is at 2 ppb in water.  相似文献   

12.
Currently, the fluorescent probe is an important method for detecting heavy metal ions, especially mercury ion (Hg2+), which is harmful to the health of humans and the environment due to its toxicity and extensive use. In this paper, we designed and synthesized a colorimetric and long‐wavelength fluorescent probe Hg‐P with high sensitivity and excellent selectivity, which could detect Hg2+ by the changes of visual color, fluorescence and absorption spectroscopy. With the addition of Hg2+ to probe Hg‐P solution, its color changed from yellow to pink, and showed a 171 nm red‐shifted absorption spectrum. Probe Hg‐P was used in real water and soil solution samples to detect Hg2+, and the result is satisfactory. Therefore, this new probe shows great value and application in detecting Hg2+ in the environment.  相似文献   

13.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We report herein a novel luminescent iridium(III) complex with two hydrophobic carbon chains as a non-reaction based chemosensor for the detection of Hg2+ ions in aqueous solution (<0.002% of organic solvent attributed to the probe solution). Upon the addition of Hg2+ ions, the emission intensity of the complex was significantly enhanced and this change could be monitored by the naked eye under UV irradiation. The iridium(III) complex shows high specificity for Hg2+ ions over eighteen other cations. The system is capable of detecting micromolar levels of Hg2+ ions, which is within the range of many chemical systems.  相似文献   

15.
Naphthalimide‐based fluorescent probes 1 and 2 were synthesized, and were designed to form probe–Hg complexes through Hg2+ ions coordinated to the amide group and imidazole group. They showed high sensitivity and were selective ‘naked‐eye’ chemosensors for Hg2+ in phosphate buffer. The fluorescence of compounds 1 and 2 could be quenched up to 90% by the addition of Hg2+. Reversible probes can detect Hg2+ ions over a wide pH range (7.0–10.0). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We report the fabrication of a novel easily available turn‐on fluorescent water‐soluble polymeric chemosensor for Hg2+ ions that was simply prepared by micellar free radical polymerization of a water‐insoluble organic rhodamine‐based Hg2+‐recognizing monomer (GR6GH), with hydrophilic monomers acrylamide (AM) and acrylic acid (AA). The chemical structure of the polymeric sensor was characterized by FT‐IR and 1H NMR spectroscopy. The apparent viscosity average molecular weight Mη of poly(acrylamide–acrylic acid) [poly(AM–NaAA)] and the water‐soluble polymeric chemosensor poly(AM–NaAA–GR6GH) were 1.76 × 106 and 6.84 × 104 g/mol, respectively. Because of its amphiphilic property, the water‐soluble polymeric chemosensor can be used as a chemosensor in aqueous media. Upon addition of Hg2+ ions to an aqueous solution of poly(AM–NaAA–GR6GH), fluorescence enhancements were observed instantly. Moreover, other metal ions did not induce obvious changes to the fluorescence spectra. This approach may provide an easily measurable and inherently sensitive method for Hg2+ ion detection in environmental and biological applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We prepared an aminothiourea‐derived Schiff base (DA) as a fluorescent chemosensor for Hg2+ ions. Addition of 1 equiv of Hg2+ ions to the aqueous solution of DA gave rise to an obvious fluorescence enhancement and the subsequent addition of more Hg2+ induced gradual fluorescence quenching. Other competing ions, including Pb2+, Cd2+, Cr3+, Zn2+, Fe2+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+, did not induce any distinct fluorescence changes, indicating that DA can selectively detect Hg2+ ions in aqueous solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an innovative and facile one‐pot method for synthesizing water‐soluble and stable fluorescent Cu nanoclusters (CuNCs), in which glutathione (GSH) served as protecting ligand and ascorbic acid (AA) as reducing agent was reported. The resultant CuNCs emitted blue‐green fluorescence at 440 nm, with a quantum yield (QD) of about 3.08%. In addition, the prepared CuNCs exhibited excellent properties such as good water solubility, photostability and high stability toward high ionic strength. On the basis of the selective quenching of Hg2+ on CuNCs fluorescence, which may be the result of Hg2+ ion‐induced aggregation of the CuNCs, the CuNCs was used for the selective and sensitive determination of Hg2+ in aqueous solution. The proposed analytical strategy permitted detection of Hg2+ in a linear range of 4 × 10?8 to 6 × 10?5 M, with a detection limit of 2.2 × 10?8 M. Eventually, the practicability of this sensing approach was confirmed by its successful application to assay Hg2+ in tap water, Lotus lake water and river water samples with the quantitative spike recoveries ranging from 96.9% to 105.4%.  相似文献   

19.
Based on highly selective and irreversible Hg2+-promoted desulfurization reaction, a new and simple phenanthroimidazole-type sensor was prepared and exhibited high selectivity towards Hg2+ ion over other metal ions, accompanied by transformation of a weakly fluorescent thioamide moiety (colorless) to a highly fluorescent amide one (blue), with a 136-fold increase in fluorescent intensity in aqueous solution with a pH span 2.57–9.12.  相似文献   

20.
Mercury (Hg) is a heavy metal with high toxicity and easy migration; it can be enriched through the food chain, and cause serious threats to the natural environment and human health. So, the development of a method that can be used to detect mercury ions (Hg2+) in the environment, in cells, and in organisms is very important. Here, a new 7‐hydroxycoumarin‐derived carbonothioate‐based probe ( CC‐Hg ) was designed and synthesized for detection of Hg2+. After addition of Hg2+, a large fluorescence enhancement was observed due to the formation of 7‐hydroxyl, which reinforced the intramolecular charge transfer process. The CC‐Hg probe had good water solubility and selectivity. Moreover, the probe was able to detect Hg2+ quantitatively over the concentration range 0–2 μM and with a detection limit of 7.9 nM. Importantly, we successfully applied the probe to detect Hg2+ in water samples, in living cells, and in zebrafish. The experimental results demonstrated its potential value in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号