首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型兽用疫苗的研究进展   总被引:3,自引:0,他引:3  
新型兽用疫苗是免疫学和病毒学的研究热点,主要包括亚单位疫苗、基因工程缺失苗、重组病毒活载体疫苗和基因疫苗。上前已经被广泛的应用于研究和疫病的防治上。最近的疫苗发展方向集中于在基因疫苗上。高效、安全、稳定、成本低是疫苗开发的重点。本文介绍了新型疫苗的现状,以及今后发展的趋势和策略。  相似文献   

2.
Foot and mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which causes severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV). Although inactivated virus vaccines have proved to be effective in FMD control, they have a number of disadvantages, including the need for high bio-containment production facilities and the lack of induction of immunological memory. Novel FMD vaccines based on the use of recombinant empty capsids have shown promising results. These recombinant empty capsids are attractive candidates because they avoid the use of virus in the production facilities but conserve its complete repertoire of conformational epitopes. However, many of these recombinant empty capsids require time-consuming procedures that are difficult to scale up. Achieving production of a novel and efficient FMD vaccine requires not only immunogenic antigens, but also industrially relevant processes. This review intends to summarize and compare the different strategies already published for the production of FMDV recombinant empty capsids, focusing on large-scale production.  相似文献   

3.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

4.
Hepatitis vaccines: recent advances   总被引:12,自引:0,他引:12  
Despite the availability of hepatitis A vaccines that might provide protection for decades, hepatitis B vaccines that provides protection for at least 15 years and the recent introduction of a combined hepatitis A and B vaccine, these infections continue to spread in both the developed and developing world. Hepatitis A vaccine coverage has been limited to high-risk groups: such a selective immunisation policy is unlikely to have a major impact. If adequate immunogenicity in infants is confirmed, dosing schedules can be improved and the costs of vaccination reduced, universal paediatric immunisation with combined hepatitis A and B products is likely to result in the eventual eradication of these infections. In the interim, novel hepatitis A vaccines are being investigated and additional studies on hepatitis A vaccine immunogenicity in infants are in progress. Worldwide use of hepatitis B vaccines for the newborn, young children and high-risk groups should control this infection and obviate the need for a vaccine against hepatitis D. Newer hepatitis B vaccines that may reduce the likelihood of non-responsiveness and have immunotherapeutic value are under study. A recombinant hepatitis E vaccine for use in endemic regions is currently in clinical trials. The development of an effective hepatitis C vaccine has been agonisingly slow and many impediments have been recognised. These include the lack of a susceptible small animal, a high degree of hepatitis C virus (HCV) genomic diversity and failure to produce high quantities of HCV in tissue culture. The development of a novel HCV replicon system may be a major breakthrough. Nonetheless, it may still be exceedingly difficult to produce a vaccine that uniformly provides sterilising immunity; the possibility of developing a hepatitis C vaccine that can prevent chronic infection is an exciting concept that requires further investigation. Advances in recombinant technology, the use of novel genetic (DNA-based) vaccines, expression of hepatitis antigens in plants and improved adjuvants also hold considerable promise.  相似文献   

5.
The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory perspective, Quality by Design (QbD) and Process Analytical Technology (PAT) are important initiatives that can be applied effectively to many types of vaccine processes. Universal demand for vaccines requires that a manufacturer plan to supply tens and sometimes hundreds of millions of doses per year at low cost. To enable broader use, there is intense interest in improving temperature stability to allow for excursions from a rigid cold chain supply, especially at the point of vaccination. Finally, there is progress in novel routes of delivery to move away from the traditional intramuscular injection by syringe approach.  相似文献   

6.
Immunization against common bacterial and viral diseases has helped prevent millions of deaths worldwide. More recently, the concept of vaccination has been developed into a potentially novel strategy to treat and prevent cancer formation, progression, and spread. Over the past few years, a handful of anti-cancer vaccines have been licensed and approved for use in clinical practice, thus providing a breakthrough in the field. However, the path has not always been easy, with many hurdles that have had to be overcome in order to reach this point. Nevertheless, with more anti-cancer vaccines currently in development, there is still hope that they can eventually become routine tools used in the treatment and prevention of cancer in the future. This review will discuss in detail both types of anti-cancer vaccine presently used in clinical practice — therapeutic and preventive — before considering some of the more promising anti-cancer vaccines that are currently in development. Finally, the issue of side effects and the debate surrounding the overall cost-effectiveness of anti-cancer vaccines will be examined.  相似文献   

7.
Research Advances on Transgenic Plant Vaccines   总被引:1,自引:0,他引:1  
In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.  相似文献   

8.
Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologies based on embryonated chicken eggs may be replaced by cell culture techniques. Reverse genetics techniques can speed up the generation of seed viruses and new mathematical modelling methods improve vaccine strain selection. Better understanding of the correlates of immune-mediated protection may lead to new vaccine targets besides the viral haemagglutinin, like the neuraminidase and M2 proteins. In addition, the role of cell-mediated immunity could be better exploited. New adjuvants have recently been shown to increase the breadth and the duration of influenza vaccine-induced protection. Other studies have shown that influenza vaccines based on different viral vector systems may also induce broad protection. It is to be expected that these developments may lead to more universal influenza vaccines that elicit broader and longer protection, and can be produced more efficiently.  相似文献   

9.
Anticancer vaccines have been extensively studied in animal models and in clinical trials. While vaccination can lead to tumor protection in numerous murine models, objective tumor regressions after anticancer vaccination in clinical trials have been rare. B16 is a poorly immunogenic murine melanoma that has been extensively used in anticancer vaccination experiments. Because B16 has been widely used, different vaccination strategies can be compared. We reviewed the results obtained when B16 was treated with five common vaccine types: recombinant viral vaccines, DNA vaccines, dendritic cell vaccines, whole-tumor vaccines, and peptide vaccines. We also reviewed the results obtained when B16 was treated with vaccines combined with adoptive transfer of tumor antigen-specific T cells. We found several characteristics of vaccination regimens that were associated with antitumor efficacy. Many vaccines that incorporated xenogeneic antigens exhibited more potent anticancer activity than vaccines that were identical except that they incorporated the syngeneic version of the same antigen. Interleukin-2 enhanced the antitumor efficacy of several vaccines. Finally, several effective regimens generated large numbers of tumor antigen-specific CD8(+) T cells. Identification of vaccine characteristics that are associated with antitumor efficacy may aid in the development of more effective anticancer vaccination strategies.  相似文献   

10.
转基因植物疫苗的研究进展   总被引:8,自引:0,他引:8  
韩梅  苏涛  祖元刚  安志刚 《遗传学报》2006,33(4):285-293
近些年,随着遗传技术和植物基因工程的发展进步,疫苗(亚单位疫苗、活载体疫苗和核酸疫苗等)的研究迅速发展起来。尤其是利用转基因植物技术生产植物疫苗的研究受到了广泛的关注,在转基因植物(蔬菜、水果、农作物)的可食用部位表达抗原生产人或动物治疗用重组蛋白和疫苗的技术为可食性疫苗的研制开辟了新途径,展现了诱人的开发前景。植物来源的疫苗具有很多优势,如生产成本低、易于保存、免疫接种方便、甚至不需提取纯化等处理而直接食用。目前已有很多转基因植物疫苗产品投入开发和生产。文章综述了近几年转基因植物疫苗在表达系统、生产、生物安全/管理、公众健康等方面的研究进展,对转基因植物疫苗存在的问题进行了分析,并对其研究前景提出了展望。  相似文献   

11.
Vaccination is the most effective and least expensive technique used for human diseases prevention and eradication. The need for more vaccine doses and the rapid establishment of facilities for the development of new vaccines are stimulating significate changes in the vaccine industry, which is gradually moving towards cell culture production. One approach is the third generation of vaccines, which are based on the use of plasmid DNA (pDNA) containing transgenes that encode an antigen capable of mimicking intracellular pathogenic infection and triggering both humoral and cellular immune responses. Plasmid DNA vaccination has distinct advantages over other vaccine technologies in terms of safety, ease of fabrication and stability. The effectiveness of pDNA vaccines against viruses, bacteria, parasites and cancer cells has been demonstrated in preclinical and clinical assays. Furthermore, currently there are a few veterinary pDNA vaccines in the market. The application of a simple formulation of naked pDNA as a vaccine is attractive, but a low transfection efficiency is often obtained. The use of nanoparticles to increase transfection efficiency is an approach that has been tested clinically. This review provides a summary of vaccine production, advances and major challenges associated with pDNA lipid and polymeric nanovaccines applications.  相似文献   

12.
The messenger RNA (mRNA) vaccines have progressed from a theoretical concept to a clinical reality over the last few decades. Compared to conventional vaccination methods, these vaccines have a number of benefits, such as substantial potency, rapid growth, inexpensive production, and safe administration. Nevertheless, their usefulness was restricted up to now due to worries about the erratic and ineffective circulation of mRNA in vivo. Thankfully, these worries have largely been allayed by recent technological developments, which have led to the creation of multiple mRNA vaccination platforms for cancer and viral infections. The mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. The paper will examine the present status of mRNA vaccine technology and suggest future paths for the advancement and application of this exciting vaccine platform as a common therapeutic choice.  相似文献   

13.
The complexity of parasitic infections requires novel approaches to vaccine design. The versatility of DNA vaccination provides new perspectives. This review discusses the use of prime-boost immunizations, genetic adjuvants, multivalent vaccines and codon optimization for optimal DNA vaccine design against parasites.  相似文献   

14.
全球范围内艾滋病的流行使发展安全有效的疫苗势在必行。本文讨论了各种不同类型的艾滋病疫苗的优点和缺点,包括传统疫苗(灭活疫苗、减毒活疫苗)和新型疫苗(病毒颗粒样疫苗、重组亚单位疫苗、重组活载体病毒疫苗),同时也指出了发展艾滋病疫苗所面临的挑战,如病毒的变异、没有充足的动物模型和HIV感染免疫系统本身。概述了正在进行的艾滋病疫苗的临床试验,并对下一步研究进行了展望。  相似文献   

15.
Vaccine development: From empiric discovery to knowledge‐based improvement A successful vaccination requires an efficient immune response towards the vaccine and the induction of long‐lasting immunological memory. Pattern recognition receptors such as the Toll‐like receptors are crucial components of the innate immune system required for the initiation of an anti‐infective immune response. TLR ligands may serve as efficient adjuvants for vaccines. Strategies for improvement of vaccines and for the future development of vaccines against as yet “non‐vaccinable” infectious diseases include novel antigen preparations, targeting of pattern recognition receptors, and exploitation of novel administration routes such as mucosal vaccination.  相似文献   

16.
Optimizing the development of modern molecular vaccines requires a complex series of interdisciplinary efforts involving basic scientists, immunologists, molecular biologists, clinical vaccinologists, bioinformaticians and epidemiologists. This review summarizes some of the major issues that must be carefully considered. The intent of the authors is to briefly describe key components of the development process to give the reader an overview of the challenges faced from vaccine concept to vaccine delivery. Every vaccine requires unique features based on the biology of the pathogen, the nature of the disease and the target population for vaccination. This review presents general concepts relevant for the design and development of ideal vaccines protective against diverse pathogens.  相似文献   

17.
The recent urgency to develop new vaccines for emerging and re-emerging diseases, such as pandemic influenza, has necessitated the use of cell substrates not previously used in the manufacture of licensed vaccines. A major safety concern in the use of novel cell substrates is the presence of potential adventitious agents, such as latent and occult viruses, that may not be detected by currently used conventional assays. In cases where the novel cell substrate is known to be tumorigenic, there are additional safety issues related to tumorigenicity of intact cells and oncogenicity of residual cellular DNA. We have developed a strategy for evaluating vaccine cell substrates for the presence of latent/occult viruses, including endogenous retroviruses, latent RNA viruses and oncogenic DNA viruses, by optimizing conditions for chemical induction of viruses and using a combination of broad and specific assays to enable detection of known and novel viruses.  相似文献   

18.
An efficacious vaccine strategy must be capable of inducing strong responses of an appropriate phenotype that are long lasting and sufficiently broad to prevent pathogen escape mechanisms. In the present study, we use anti-CD25 mAb to augment vaccine-induced immunity in mice. We demonstrate that coformulation of Ab and poxviral- or adenoviral-vectored vaccines induces significantly increased T cell responses to a malaria Ag; prior anti-CD25 Ab administration was not required for this effect. Furthermore, this vaccination approach subverts immunodominant epitope hierarchies by enhancing responses to subdominant epitopes induced by recombinant modified vaccinia virus Ankara immunization. Administration of anti-CD25 with a vaccine also induces more durable immunity compared with vaccine alone; significantly higher T cell responses were observed 100 days after the primary immunization. Enhanced immunogenicity is observed for multiple vaccine types with enhanced CD4+ and CD8+ T cell responses induced by bacillus Calmette-Guérin and a recombinant subunit protein vaccine to hepatitis B virus and with multiple Ags of tumor, viral, bacterial, and parasitic origin. Vaccine strategies incorporating anti-CD25 lead to improved protection against pre-erythrocytic malaria challenge. These data underpin new strategies for the design and development of more efficacious vaccines in clinical settings.  相似文献   

19.
In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled ‘Replicating Viral Vectors for use in AIDS Vaccines’ at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the EMEA recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries.  相似文献   

20.
Development of a subunit vaccine targeting liver-stage Plasmodium parasites requires the identification of antigens capable of inducing protective T cell responses. However, traditional methods of antigen identification are incapable of evaluating T cell responses against large numbers of proteins expressed by these parasites. This bottleneck has limited development of subunit vaccines against Plasmodium and other complex intracellular pathogens. To address this bottleneck, we are developing a synthetic minigene technology for multi-antigen DNA vaccines. In an initial test of this approach, pools of long (150 bp) antigen-encoding oligonucleotides were synthesized and recombined into vectors by ligation-independent cloning to produce two DNA minigene library vaccines. Each vaccine encoded peptides derived from 36 (vaccine 1) and 53 (vaccine 2) secreted or transmembrane pre-erythrocytic P. yoelii proteins. BALB/cj mice were vaccinated three times with a single vaccine by biolistic particle delivery (gene gun) and screened for interferon-γ-producing T cell responses by ELISPOT. Library vaccination induced responses against four novel antigens. Naïve mice exposed to radiation-attenuated sporozoites mounted a response against only one of the four novel targets (PyMDH, malate dehydrogenase). The response to PyMDH could not be recalled by additional homologous sporozoite immunizations but could be partially recalled by heterologous cross-species sporozoite exposure. Vaccination against the dominant PyMDH epitope by DNA priming and recombinant Listeria boosting did not protect against sporozoite challenge. Improvements in library design and delivery, combined with methods promoting an increase in screening sensitivity, may enable complex minigene screening to serve as a high-throughput system for discovery of novel T cell antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号