首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The coenzyme NAD plays a major role in metabolism as a key redox carrier and signaling molecule but current measurement techniques cannot distinguish between different compartment pools, between free and protein-bound forms and/or between NAD(H) and NADP(H). Local free NAD/NADH ratios can be determined from product/substrate ratios of suitable near-equilibrium redox reactions but the application of this principle is often precluded by uncertainties regarding enzyme activity, localization and coenzyme specificity of dehydrogenases. In Saccharomyces cerevisiae, we circumvented these issues by expressing a bacterial mannitol-1-phosphate 5-dehydrogenase and determining the cytosolic free NAD/NADH ratio from the measured [fructose-6-phosphate]/[mannitol-1-phosphate] ratio. Under aerobic glucose-limited conditions we estimated a cytosolic free NAD/NADH ratio between 101(+/-14) and 320(+/-45), assuming the cytosolic pH is between 7.0 and 6.5, respectively. These values are more than 10-fold higher than the measured whole-cell total NAD/NADH ratio of 7.5(+/-2.5). Using a thermodynamic analysis of central glycolysis we demonstrate that the former are thermodynamically feasible, while the latter is not. Furthermore, we applied this novel system to study the short-term metabolic responses to perturbations. We found that the cytosolic free NAD-NADH couple became more reduced rapidly (timescale of seconds) upon a pulse of glucose (electron-donor) and that this could be reversed by the addition of acetaldehyde (electron-acceptor). In addition, these dynamics occurred without significant changes in whole-cell total NAD and NADH. This approach provides a new experimental tool for quantitative physiology and opens new possibilities in the study of energy and redox metabolism in S. cerevisiae. The same strategy should also be applicable to other microorganisms.  相似文献   

2.
α淀粉酶和糖化酶在酿酒酵母中的表达和分泌   总被引:2,自引:0,他引:2  
将地衣芽孢杆菌α-淀粉酶基因及黑曲霉糖化酶cDNA重组进大肠杆菌-酵母穿梭质粒,转化酿酒酵母,构建能分解淀粉的酵母工程菌。酶活力测定和酶学性质分析的结果显示:在酵母MF-α1因子及磷酸甘油酸激酶基因的启动子和终止信号的调控下,α-淀粉酶和糖化酶基因在酵母中获得高表达并向胞外分泌这两种酶。构建的酵母工程菌在含10%淀粉的培养基中6天内能水解97%的淀粉,重组质粒能在酵母中较稳定地存在。  相似文献   

3.
A multitude of metabolic regulations occur in yeast, particularly under dynamic process conditions, such as under sudden glucose excess. However, quantification of regulations and classification of yeast strains under these conditions have yet to be elucidated, which requires high-frequency and consistent quantification of the metabolic response. The present study aimed at quantifying the dynamic regulation of the central metabolism of strains Saccharomyces cerevisiae, S. kluyveri, and Kluyveromyces lactis upon sudden glucose excess, accomplished by a shift-up in dilution rate inside of the oxidative region using a small metabolic flux model. It was found that, under transient growth conditions, S. kluyveri behaved like K. lactis, while classification using steady-state conditions would position S. kluyveri close to S. cerevisiae. For transient conditions and based on the observation whether excess glucose is initially used for catabolism (energy) or anabolism (carbon), we propose to classify strains into energy-driven, such as S. cerevisiae, and carbon-driven, such as S. kluyveri and K. lactis, strains. Furthermore, it was found that the delayed onset of fermentative catabolism in carbon-driven strains is a consequence of low catabolic flux and the initial shunt of glucose in non-nitrogen-containing biomass constituents. The MFA model suggests that energy limitation forced the cell to ultimately increase catabolic flux, while the capacity of oxidative catabolism is not sufficient to process this flux oxidatively. The combination of transient experiments and its exploitation with reconciled intrinsic rates using a small metabolic model could corroborate earlier findings of metabolic regulations, such as tight glucose control in carbon-driven strains and transient changes in biomass composition, as well as explore new regulations, such as assimilation of ethanol before glucose. The benefit from using small metabolic flux models is the richness of information and the enhanced insight into intrinsic metabolic pathways without a priori knowledge of adaptation kinetics. Used in an online context, this approach serves as an efficient tool for strain characterization and physiological studies.  相似文献   

4.
微生物降酸是现代葡萄酒酿造工艺中重要环节之一。利用现代生物技术将粟酒裂殖酵母中的苹果酸酶基因和苹果酸通透酶基因共同转化到酿酒酵母中,构建苹果酸-酒精酵母,使之既能进行酒精发酵,又能分解苹果酸。主要对近些年粟酒裂殖酵母苹果酸酶性质、基因结构及其转化酿酒酵母的研究做了回顾与总结,并指出了有待于解决的问题。  相似文献   

5.
6.
l-[14C]Leucine transport into Saccharomyces cerevisiae protoplasts involves two systems (1 and 2) with different kinetic parameters. The KT values for these systems are of the same order as those for intact yeast cells. These results suggest that the proteins related to the affinity constants are located in the cytoplasmic membrane.  相似文献   

7.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

8.
We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.  相似文献   

9.
Freshly prepared protoplasts of Saccharomyces cerevisiae X 2180 incorporate [3H]mannose and [14C]glucose for about 30 min into glycolipids and mannoproteins. Among the radioactive glycolipids formed dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides have been identified. The oligosaccharides released by weak acid from the dolichyl pyrophosphate were treated with endo-N-acetylglucosaminidase H and separated by gel filtration on Bio-Gel P-4. The largest oligosaccharide obtained corresponded exactly in size to Glc3Man9GlcNAc1 the compound formed also in animal tissues. Other oligosaccharides released from dolichyl pyrophosphate in addition to the glucose containing ones were mainly Man9GlcNAc1 and Man8GlcNAc1. No mannosyl oligosaccharide corresponding in size to the total inner core region found in native mannoproteins could be detected in a lipid-bound form.The radioactive dolichyl pyrophosphate oligosaccharides were formed transiently; after 40 min only about 40% of the maximal radioactivity was observed in this fraction. In the presence of cycloheximide this decrease did not take place.It is concluded that the dolichol pathway of N-glycosylation of glycoproteins in yeast cells is very similar, if not identical, to the reaction sequence worked out for animal cells.Dedicated to Professor Dr. Otto Kandler on his 60th birthday  相似文献   

10.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   

11.
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.  相似文献   

12.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

13.
Genetic recombination characterized by reciprocal exchange of genes on paired homologous chromosomes is the most prominent event in meiosis of almost all sexually reproductive organisms. It contributes to genome stability by ensuring the balanced segregation of paired homologs in meiosis, and it is also the major driving factor in generating genetic variation for natural and artificial selection. Meiotic recombination is subjected to the control of a highly stringent and complex regulating process and meiotic recombination frequency (MRF) may be affected by biological and abiotic factors such as sex, gene density, nucleotide content, and chemical/temperature treatments, having motivated tremendous researches for artificially manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF has attracted both historical and recent research interests; however, tackling this fundamental question is methodologically challenging due to the lack of appropriate methods for tetrasomic genetic analysis, thus has led to controversial conclusions in the literature. This article presents a comprehensive and rigorous survey of genome duplication-mediated change in MRF using Saccharomyces cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently significant increase in MRF and rate of crossovers across all 16 chromosomes of S. cerevisiae, including both cold and hot spots of MRF. This ploidy-driven change in MRF is associated with weakened recombination interference, enhanced double-strand break density, and loosened chromatin histone occupation. The study illuminates a significant evolutionary feature of genome duplication and opens an opportunity to accelerate response to artificial and natural selection through polyploidization.  相似文献   

14.
AIMS: To develop a multiplex PCR assay for the specific identification and differentiation of Saccharomyces cerevisiae, S. bayanus and their hybrids. METHODS AND RESULTS: Two sets of primers with sequences complementary to the region YBR033w were used. A single amplicon of 1710 bp or 329 bp was obtained with species S. cerevisiae and S. bayanus, respectively, while the presence of both bands was observed in S. pastorianus because of its hybrid nature. Both amplification products were also obtained after amplification from DNA of several laboratory S. cerevisiae x S. bayanus hybrid strains. CONCLUSIONS: Multiplex PCR was optimized for the rapid and reliable identification of S. cerevisiae, S. bayanus and their hybrids. SIGNIFICANCE AND IMPACT OF THE STUDY: The procedure may be used for routine detection of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes, overcoming the problems of conventional techniques.  相似文献   

15.
16.
The steady-state behavior of a glucose-limited, aerobic, continuous cultivation of Saccharomyces cerevisiae CEN.PK113-7D was investigated around the critical dilution rate. Oxido-reductive steady states were obtained at dilution rates up to 0.09 h(-1) lower than the critical dilution rate by operating the bioreactor as a productostat, where the dilution rate was controlled on the basis of an ethanol measurement. Thus, the experimental investigations revealed that multiple steady states exist in a region of dilution rates below the critical dilution rate. The existence of multiple steady states was attributed to two distinct physiological effects occurring when growth changed from oxidative to oxido-reductive: (i) a decrease in the efficiency of ATP production and utilization (at ethanol concentrations below 3 g/L) and (ii) repression of the oxidative metabolism (at higher ethanol concentrations). The first effect was best observed at low ethanol concentrations, where multiple steady states were observed even when no repression of the oxidative metabolism was evident, i.e., the oxidative capacity was constant. However, at higher ethanol concentrations repression of the oxidative metabolism was observed (the oxidative capacity decreased), and this resulted in a broader range of dilution rates where multiple steady states could be found.  相似文献   

17.
A new method for transformation of Saccharomyces cerevisiae that allows selection was developed. As the frequency of spontaneous blasticidin S resistant mutants from diploid type yeast strain (X-2180AB) was 5.2×10–6, which was a thousandfold less than that from haploid type yeast strain (X-2180B), it was considered that the mechanism of spontaneous blasticidin S resistant mutations was related to recessive gene. Industrial yeasts, which were diploid, were transformed with blasticidin S deaminase gene from Aspergillus terreus to blasticidin S resistance. Expression of blasticidin S deaminase gene allowed selection of transformants from industrial yeasts.  相似文献   

18.
19.
AIMS: Artificial genes, which encode 48 or 64 repeats of a tripeptide, glutamyl-tryptophanyl-lysine have been cloned to the yeast expression vector pAM82 containing the PHO5 promoter and expressed in Saccharomyces cerevisiae AH22. METHODS AND RESULTS: When the yeast cells harbouring recombinant plasmids pALTG6-2 and pALTG4-4 were derepressed in Burkholder minimal medium (Toh-e, A., Ueda, Y., Kakimoto, S.I. and Oshima, Y. (1973) Journal of Bacteriology113, 727-738) containing low phosphate (0.03 g l-1 KH2PO4 and 1.5 g l-1 KCl), the expression was the highest after 24 h induction and the artificial polypeptides were synthesized to about 10% (pALTG6-2) and 14% (pALTG4-4) of the total cell protein. CONCLUSIONS: The artificial polypeptides produced in yeast were made to react with the rabbit antiserum against the polypeptide purified from Escherichia coli and found only in the pellet fraction of cell lysates, indicating the formation of inclusion body. Artificial polypeptide consisting of Glu-Trp-Lys may be useful as partial supplement in food and feeds. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of single cell enriched with homopolymers of an essential amino acid in yeast might be an important tool of supplementing cereal diets and feed grain rations and could be used as means for improvement of the amino acid profile of single cell protein and production of pharmaceutical peptides.  相似文献   

20.
Recent technical advances in mass spectrometry (MS) have propelled this technology to the forefront of methods employed in metabolome analysis. Here, we compare two distinct analytical approaches based on MS for their potential in revealing specific metabolic footprints of yeast single-deletion mutants. Filtered fermentation broth samples were analyzed by GC-MS and direct infusion ESI-MS. The potential of both methods in producing specific and, therefore, discriminant metabolite profiles was evaluated using samples from several yeast deletion mutants grown in batch-culture conditions with glucose as the carbon source. The mutants evaluated were cat8, gln3, ino2, opi1, and nil1, all with deletion of genes involved in nutrient sensing and regulation. From the analysis, we found that both methods can be used to classify mutants, but the classification depends on which metabolites are measured. Thus, the GC-MS method is good for classification of mutants with altered nitrogen regulation as it primarily measures amino acids, whereas this method cannot classify mutants involved in regulation of phospholipids metabolism as well as the direct infusion MS (DI-MS) method. From the analysis, we find that it is possible to discriminate the mutants in both the exponential and stationary growth phase, but the data from the exponential growth phase provide more physiological relevant information. Based on the data, we identified metabolites that are primarily involved in discrimination of the different mutants, and hereby providing a link between high-throughput metabolome analysis, strain classification, and physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号