首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzymatic method using phenylalanine ammonia-lyase (l-phenylalanine ammonia-lyase, EC 4.3.1.5) for the rapid conversion of l-[U-14C]phenylalanine to the deaminated lignin precursor trans-[U-14C]cinnamic acid is described. The method produces an experimentally useful 14C-labelled deaminated lignin precursor unavailable from radiochemical supply companies.  相似文献   

2.
A procedure for the synthesis of a11C‐labeled oligopeptide containing [1‐11C]1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid ([1‐11C]Tpi) from the corresponding Trp?HCl‐containing peptides has been developed involving a Pictet‐Spengler reaction with [11C]formaldehyde. The synthesis of [1‐11C]Tpi from Trp and [11C]formaldehyde was examined as a model reaction with the aim of developing a facile and effective method for the labeling of peptides with carbon‐11. The Pictet‐Spengler reaction of Trp and [11C]formaldehyde in acidic media (TsOH or HCl) afforded the desired [1‐11C]Tpi in a moderate radiochemical yield. Herein, the application of a Pictet‐Spengler reaction to an aqueous solution of Trp?HCl gave the desired product with a radiochemical yield of 45.2%. The RGD peptide cyclo[Arg‐Gly‐Asp‐D‐Tyr‐Lys] was then selected as a substrate for the labeling reaction with [11C]formaldehyde. The radiolabeling of a Trp?HCl‐containing RGD peptide using the Pictet‐Spengler reaction was successful. Furthermore, the remote‐controlled synthesis of a [1‐11C]Tpi‐containing RGD peptide was attempted by using an automatic production system to generate [11C]CH3I. The radiochemical yield of the [1‐11C]Tpi‐containing RGD at the end of synthesis (EOS) was 5.9 ± 1.9% (n = 4), for a total synthesis time of about 35 min. The specific activity was 85.7 ± 9.4 GBq/µmol at the EOS. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
C‐2 dimethylated/unmethylated thiazolidine‐4‐carboxylic acid and C‐2 dimethylated oxazolidine‐4‐carboxylic acid were introduced into the insect kinin core pentapeptide in place of Pro3, yielding three new analogues. NMR analysis revealed that the peptide bond of Phe2‐pseudoproline (ΨPro)3 is practically 100% in cis conformation in the case of dimethylated pseudoproline‐containing analogues, about 50% cis for the thiazolidine‐4‐carboxylic acid analogue and about 33% cis for the parent Pro3 peptide. The diuretic activities are consistent with the population of cis conformation of the Phe2‐ΨPro3/Pro3 peptide bonds, and the results confirm a cis Phe‐Pro bond as bioactive conformation. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
6.
The syntheses of poly-l-lactide (PLLA) and poly-l-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 °C with a molecular weight (M n ) of 37.8 × 103 g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 °C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF6] at 65 °C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF–MS, X-ray diffraction, polarimetry and rheology.  相似文献   

7.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

8.
Short‐chain carboxylic acids generated by various mixed‐ or pure‐culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short‐chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n‐butyric acid, isobutyric acid, n‐valeric acid, and n‐caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4–0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD+ via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n‐butyric acid to n‐butanol conversion via syngas fermentation can be further improved. Biotechnol. Bioeng. 2013; 110: 1066–1077. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150–180 g l−1) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l−1 and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to l(+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.  相似文献   

10.
d ‐Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly‐d ‐lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d ‐lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate‐rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d ‐lactic acid production (27.9 g/L, 99.9% optical purity of d ‐lactic acid), with a higher glucose to d ‐lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d ‐lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed‐batch SSF approach, where it was shown that the d ‐lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d ‐lactic acid from DDGS as it reduced the overall processing time and yielded high d ‐lactic acid concentrations.  相似文献   

11.
[Glycine-1-14C]hippuryl-l-histidyl-l-leucine was synthesized and evaluated as a substrate for the radiochemical assay of angiotensin converting enzyme. Hydrolysis is measured by quantitation of the liberated [glycine-1-14C]hippuric acid by liquid seintillation counting and is linear up to 30% hydrolysis. The advantages of the radiochemical assay over the spectrophotometric quantitation of the liberated hippuric acid are its increased sensitivity and lack of interference by nonionic detergents or lipids.  相似文献   

12.
Antibacterial functionalization of wool fabric via immobilizing lysozymes   总被引:2,自引:0,他引:2  
Greater attention has been given to enzymatic processes of textiles as effective alternatives to conventional chemical treatments because of the non-toxic and eco-friendly characteristics of enzymes as well as the increasingly important requirement for reducing pollution in textile production. A new functionalization method for wool fabrics based on immobilization of lysozymes was investigated in this paper. Wool fabric was first activated with glutaraldehyde, and then employed to covalently immobilize lysozymes. Main immobilization parameters were optimized in terms of the activity of immobilized enzyme. A high activity of the immobilized enzyme was obtained when the fabric was activated at 25 °C for 6 h in a bath containing with 0.2% of glutaraldehyde followed by the immobilization at 4 °C and pH 7.0 for 6 h with 5 g l−1 lysozyme. The scanning electron microscopy and staining tests based on modified Coomassie protein assay (Bradford method) revealed that the lysozyme was fixed covalently on the wool fabric. Wool fabrics immobilizing lysozymes presented a higher ratio of bacteriostasis to Staphylococcus aureus. The durability of antibacterial wool was assessed and the lysozyme immobilized on wool fabric retained ca. 43% of its activity after five cycles of use when taking the activity of the immobilized lysozyme before using as reference.  相似文献   

13.
Ozone treatment affects pigment precursor metabolism in pine seedlings   总被引:1,自引:0,他引:1  
Five‐week‐old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l?1, 12 h day?1 for 4 days) or to ambient air containing ca 10–20 nl l?1 O3, in the light (180 μmol m?2 s?1 photosynthetic photon flux density [PPFD], 12 h day?1) and then fed for 24 h in the light (100 μmol m?2 s?1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5‐[4‐14C]‐aminolevulinic acid (14C‐ALA), l ‐[14C(U)]‐glutamic acid (14C‐Glu), or d ,l ‐[2‐14C]‐mevalonic acid (14C‐MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin‐layer chromatography and high‐performance liquid chromatography and their specific activities were determined. 14C‐ALA and 14C‐Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C‐ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C‐MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C‐ALA was used as the label than when 14C‐Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3‐treated pine seedlings with 14C‐ALA and 14C‐Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C‐ALA (in comparison with 14C‐Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as well as cooperation between two pathways of isopentenyl diphosphate biosynthesis.  相似文献   

14.
A fast, relatively inexpensive method of measuring the enzymatic formation of l-asparagine from l-aspartate is presented. This radiochemical assay requires simple manipulations making it ideal for working with large numbers of samples, while maintaining high sensitivity and reproducibility. A mechanism similar to the enzymatic β-decarboxylation of aspartate is utilized but in a nonenzymatic reaction. In the presence of pyridoxal and Al3+ ions, the 14C of l-[4-14C]aspartate is decarboxylatd while l-[4-14C]asparagine remains intact. This assay is shown to be suitable for measuring mammalian l-asparagine synthetase activity, while not requiring the isolation of assay enzymes.  相似文献   

15.
Lactic acid is a versatile chemical that can be produced via fermentation of lignocellulosic materials. The heterolactic strain Lactobacillus pentosus CECT 4023 T, that can consume glucose and xylose, was studied to produce lactic acid from steam exploded wheat straw prehydrolysate. The effect of temperature and pH on bacterial growth was analyzed. Besides, the effect of oxygen on lactic acid production was tested and fermentation yields were compared in different scenarios. This strain showed very high tolerance to the inhibitors contained in the wheat straw prehydrolysate. The highest lactic acid yields based on present sugar, around 0.80 g g−1, were obtained from glucose in presence of 25%, 50%, and 75% v v−1 of prehydrolysate in strict anaerobiosis. Lactic fermentation of wheat straw hydrolysate obtained after enzymatic hydrolysis of the prehydrolysate yielded 0.39 g of lactic acid per gram of released sugars, which demonstrated the high potential of L. pentosus to produce lactic acid from hemicellulosic hydrolysates. Results presented herein not only corroborated the ability of L. pentosus to grow using mixtures of sugars, but also demonstrated the suitability of this strain to be applied as an efficient lactic acid producer in a lignocellulosic biorefinery approach. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2739, 2019  相似文献   

16.
This paper describes the development of a simple method for mixed non‐covalent and covalent bonding of partially purified inulinase on functionalized multiwall carbon nanotubes (f‐MWCNTs) with polypyrrole (PPy). The pyrrole (Py) was electrochemically polymerized on MWCNTs in order to fabricate MWCNTs/PPy nanocomposite. Two multiple forms of enzyme were bound to N‐H functional groups from PPy and ‐COO? from activated MWCNTs to yield a stable MWCNTs/PPy/PEG immobilized preparation with increased thermal stability. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to confirm functionalization of nanoparticles and immobilization of the enzyme. The immobilization yield of 85% and optimal enzyme load of 345 μg protein onto MWCNTs was obtained. The optimum reaction conditions and kinetic parameters were established using the UV‐Vis analytical assay. The best functional performance for prepared heterogeneous catalyst has been observed at pH 3.6 and 10, and at the temperatures of 60 and 80ºC. The half‐life (t1/2) of the immobilized inulinase at 60 and 80ºC was found to be 231 and 99 min, respectively. The reusability of the immobilized formulation was evaluated based on a method in which the enzyme retained 50% of its initial activity, which occurred after the eighteenth operation cycle.  相似文献   

17.
Abstract

With the aim of evaluating interaction between double‐stranded calf thymus (ds)DNA and sulphur containing fused planar rings, the derivatives of 1,8‐naphthyridine containing thiono groups were synthesized by the condensation of 2‐mercapto‐3‐formyl[1,8]naphthyridines using 1‐chloroacetone, 2‐chloroacetamide, chloroaceticacid, and 2‐chloro‐1‐phenylethanone in the presence of anhydrous potassium carbonate as s catalyst under solvent free microwave irradiation. The structures of the compounds were elucidated on the basis of elemental analysis, IR, 1H NMR, and mass spectra. The interaction of thieno[2,3‐b]‐1,8‐naphthyridine‐2‐carboxylic acid (TNC) (3a) with ct‐DNA was studied by UV‐Vis spectrophotometry, viscosity, thermal denaturation, as well as cyclic voltammetry experiments. On binding to DNA, the absorption spectrum underwent bathochromic and hypochromic shifts. Binding parameters, determined from spectrophotometric measurements indicated a binding constant of K b =2.1×106 M?1. The thieno[2,3‐b]‐1,8‐naphthyridine‐2‐carboxylic acid (3a) increases the viscosity of sonicated rod‐like DNA fragments. The binding of TNC to DNA increased the melting temperature by about 4°C. The decrease in peak current heights and shifts of peak potential values are observed by the addition of calf thymus DNA in cyclic voltammetry studies.  相似文献   

18.
Abstract

Polylactic acid is an interesting biodegradable and bioabsorbable material, and is produced from lactic acid, either by the direct polycondensation of lactic acid or via the ring-opening polymerization (ROP) of lactide. A future target of it is to improve some of the polyester properties for specific biomedical applications. The biocatalytic ROP of lactide is attractive as a route to polymer synthesis due to its lack of toxic reactants, mild reaction requirements, and recyclability of immobilized enzyme. Therefore, the use of immobilized enzymes is also being investigated.

The aim of this work was to develop a methodology to synthesize high molecular weight polylactic acid via enzymatic ROP method using free enzyme and Candida antarctica lipase B (CALB) immobilized onto chitin and chitosan. The efficiency of the two approaches has been compared, with polymerization kinetics and resulting products fully characterized by FT-IR, NMR, DSC, XRD, and TGA analyses.  相似文献   

19.
The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer‐[RuIII(2‐bimc)3] ? H2O ( 1 ) and cis‐[RuIVCl2(2,3‐pydcH)2] ? 4H2O ( 2 ), were obtained using aromatic carboxylic acid ligands, namely, 1H‐benzimidazole‐2‐carboxylic acid (2‐bimcH) and pyridine‐2,3‐dicarboxylic acid (2,3‐pydcH2). Compounds were physicochemically characterized using X‐ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π???π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.  相似文献   

20.
Radio-isotope studies indicated not only that l-tryptophan can serve as carbon source for synthesis of the trypanocide, violacein by Chromobacterium violaceum (BB-78 strain) but also that isatin and indole 3-acetic acid are both important metabolic intermediates. Using 3-indolyl [2-14C] and [1-14C] acetic acid, it was found that the carboxylic carbon was not eliminated and that indole-3-acetic acid was incorporated intact into the pigment structure. N-Ethyl(5-hydroxy-indol-3-yl)-2-indolylethylamide is also an important metabolic intermediate in the violacein biosynthesis. This is the first report of a metabolic scheme for violacein synthesis which includes an intermediate other than l-tryptophan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号