首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tcb2 is a calcium‐binding protein that localizes to the membrane‐associated skeleton of the ciliated protozoan Tetrahymena thermophila with hypothesized roles in ciliary movement, cell cortex signaling, and pronuclear exchange. Tcb2 has also been implicated in a unique calcium‐triggered, ATP‐independent type of contractility exhibited by filamentous networks isolated from the Tetrahymena cytoskeleton. To gain insight into Tcb2's structure‐function relationship and contractile properties, we determined solution NMR structures of its C‐terminal domain in the calcium‐free and calcium‐bound states. The overall architecture is similar to other calcium‐binding proteins, with paired EF‐hand calcium‐binding motifs. Comparison of the two structures reveals that Tcb2‐C's calcium‐induced conformational transition differs from the prototypical calcium sensor calmodulin, suggesting that the two proteins play distinct functional roles in Tetrahymena and likely have different mechanisms of target recognition. Future studies of the full‐length protein and the identification of Tcb2 cellular targets will help establish the molecular basis of Tcb2 function and its unique contractile properties. Proteins 2016; 84:1748–1756. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
The connexin carboxyl‐terminal (CxCT) domain plays a role in the trafficking, localization, and turnover of gap junction channels, as well as the level of gap junction intercellular communication via numerous post‐translational modifications and protein–protein interactions. As a key player in the regulation of gap junctions, the CT presents itself as a target for manipulation intended to modify function. Specific to intrinsically disordered proteins, identifying residues whose secondary structure can be manipulated will be critical toward unlocking the therapeutic potential of the CxCT domain. To accomplish this goal, we used biophysical methods to characterize CxCT domains attached to their fourth transmembrane domain (TM4). Circular dichroism and nuclear magnetic resonance were complementary in demonstrating the connexin isoforms that form the greatest amount of α‐helical structure in their CT domain (Cx45 > Cx43 > Cx32 > Cx50 > Cx37 ≈ Cx40 ≈ Cx26). Studies compared the influence of 2,2,2‐trifluoroethanol, pH, phosphorylation, and mutations (Cx32, X‐linked Charcot‐Marie Tooth disease; Cx26, hearing loss) on the TM4‐CxCT structure. While pH modestly influences the CT structure, a major structural change was associated with phosphomimetic substitutions. Since most connexin CT domains are phosphorylated throughout their life cycle, studies of phospho‐TM4‐CxCT isoforms will be critical toward understanding the role that structure plays in regulating gap junction function. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 143–162, 2016.  相似文献   

3.
4.
The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant‐binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant‐binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real‐time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant‐binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans‐caryophelle, farnesene, and cis‐3‐Hexen‐1‐ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild‐type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α‐helical content.  相似文献   

5.
Angiotensin‐converting enzyme (ACE) is a key molecule of the renin–angiotensin–aldosterone system which is responsible for the control of blood pressure. For over 30 years it has become the target for fighting off hypertension. Many inhibitors of the enzyme have been synthesized and used widely in medicine despite the lack of ACE structure. The last 5 years the crystal structure of ACE separate domains has been revealed, but in order to understand how the enzyme works it is necessary to study its structure in solution. We present here the cloning, overexpression in Escherichia coli, purification and structural study of the Ala959 to Ser1066 region (ACE_C) that corresponds to the C‐catalytic domain of human somatic angiotensin‐I‐converting enzyme. ACE_C was purified under denatured conditions and the yield was 6 mg/l of culture. Circular dichroism (CD) spectroscopy indicated that 1,1,1‐trifluoroethanol (TFE) is necessary for the correct folding of the protein fragment. The described procedure can be used for the production of an isotopically labelled ACE959–1066 protein fragment in order to study its structure in solution by NMR spectroscopy. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
A model octapeptide segment derived from vasoactive intestinal peptide (VIP) was utilised to investigate the effect of several conventional cyclisation methods on the α‐helical conformation in short peptide fragments. Three of the classical macrocyclisation techniques (i.e. lactamisation, ring‐closing metathesis and Huisgen cycloaddition) were applied, and the conformations of the resulting cyclic peptides, as well as their linear precursors, were compared by CD analysis. The visibly higher folding propensity of the triazole‐tethered peptide after azide‐alkyne CuAAC macrocyclisation illustrates that the secondary structure of a short peptide fragment can differ significantly depending on the chemical strategy used to covalently cross‐link side chain residues in a ‘helical’ fragment. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Alpha‐synuclein (αS) is the primary component of Lewy bodies, the pathological hallmark of Parkinson's Disease. Aggregation of αS is thought to proceed from a primarily disordered state with nascent secondary structure through intermediate conformations to oligomeric forms and finally to mature amyloid fibrils. Low pH conditions lead to conformational changes associated with increased αS fibril formation. Here we characterize these structural and dynamic changes using solution state NMR measurements of secondary chemical shifts, relaxation parameters, residual dipolar couplings, and paramagnetic relaxation enhancement. We find that the neutralization of negatively charged side‐chains eliminates electrostatic repulsion in the C‐terminal tail of αS and leads to a collapse of this region at low pH. Hydrophobic contacts between the compact C‐terminal tail and the NAC (non‐amyloid‐β component) region are maintained and may lead to the formation of a globular domain. Transient long‐range contacts between the C‐terminus of the protein and regions N‐terminal to the NAC region are also preserved. Thus, the release of long‐range contacts does not play a role in the increased aggregation of αS at low pH, which we instead attribute to the increased hydrophobicity of the protein.  相似文献   

8.
9.
《Chirality》2017,29(1):33-37
Dehydrative cyclization of 4‐(D‐altro ‐pentitol‐1‐yl)2‐phenyl‐2H ‐1,2,3‐triazole in basic medium with one moler equivalent of p‐toluene sulfonyl chloride in pyridine solution gave the homo‐C‐ nucleoside 4‐(2,5‐anhydro‐D‐altro ‐1‐yl)‐2‐phenyl‐2H ‐1,2,3‐triazole. The structure and anomeric configuration was determined by acylation, nuclear magnetic resonance (NMR), and mass spectroscopy. The stereochemistry at the carbon bridge of homo‐C‐ nucleoside 2‐phenyl‐2H ‐1,2,3‐triazoles was determined by circular dichroism (CD) spectroscopy.  相似文献   

10.
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production.  相似文献   

11.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

12.
Naringin is a flavanone that widely presents on daily diet and traditional medicinal materials. The ratios of naringin C‐2 diastereomers are found different in reported samples, thus suspiciously leading to various functions. In this study, we measured the interconversion of C‐2 diastereomers intensively with ultimate high‐performance liquid chromatography and circular dichroism spectra. We examined the diastereomeric naringins in fresh citrus fruit, Huajuhong decoction pieces, and naringin tablet; evaluated the impact of tablet production procedures in factory; and monitored the rapid racemization in incubation. The results not only confirmed that enzyme, temperature, and pH condition could influence the interconversion but also demonstrated that diverse ratios of diastereomers showed limited influence on metabolic behaviors of naringin in the blood, which consequently cause comparable bioactivities. This study could provide comprehensive understanding of diastereomeric interconversion and provide useful reference for drug development.  相似文献   

13.
The EF‐hand motif (helix–loop–helix) is a Ca2+‐binding domain that is common among many intracellular Ca2+‐binding proteins. We applied Fourier‐transform infrared spectroscopy to study the synthetic peptide analogues of site III of rabbit skeletal muscle troponin C (helix E–loop–helix F). The 17‐residue peptides corresponding to loop–helix F (DRDADGYIDAEELAEIF), where one residue is substituted by the D ‐type amino acid, were investigated to disturb the α‐helical conformation of helix F systematically. These D ‐type‐substituted peptides showed no band at about 1555 cm?1 even in the Ca2+‐loaded state although the native peptide (L ‐type only) showed a band at about 1555 cm?1 in the Ca2+‐loaded state, which is assigned to the side‐chain COO? group of Glu at the 12th position, serving as the ligand for Ca2+ in the bidentate coordination mode. Therefore, helix F is vital to the interaction between the Ca2+ and the side‐chain COO? group of Glu at the 12th position. Implications of the COO? antisymmetric stretch and the amide‐I′ of the synthetic peptide analogues of the Ca2+‐binding sites are discussed. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 342–347, 2013.  相似文献   

14.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Annexins are calcium‐dependent phospholipid‐binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N‐terminus as truncation of the N‐terminus of chicken annexin A5 significantly decreases this process and replacement of the N‐terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N‐terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium‐dependent membrane aggregation.  相似文献   

16.
Intrinsically disordered stress proteins have been shown to act as chaperones, protecting proteins from damage caused by stresses such as freezing and thawing. Dehydration proteins (dehydrins) are intrinsically disordered stress proteins that are found in almost all land plants. They consist of a variable number of the short, semi‐conserved, Y‐, S‐, and K‐segments, with longer stretches of poorly conserved sequences in between. Previous studies have provided conflicting views on the details of the dehydrin cryoprotective mechanism of enzymes. Experiments with polyethylene glycol (PEG) have shown that PEG cryoprotective efficiency is the same as dehydrins of the same hydrodynamic radius, suggesting that the protein's disordered and polar nature is important, rather than the specific order of the residues. To further elucidate the mechanism, we created scrambled variants of the wild grape dehydrins K2 and YSK2 and tested their ability to protect lactate dehydrogenase and yeast frataxin homolog‐1 from freeze/thaw damage. The results show that for preventing aggregation, it is the sequence composition and the size of the dehydrin that is the most important factor in protection, while for freeze/thaw damage causing loss of secondary structure, it is the sequence composition that is most significant.  相似文献   

17.
18.
Dense‐core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled‐coil protein CCCP‐1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP‐1 binds the small GTPase RAB‐2 and colocalizes with it at the trans‐Golgi. Here, we report a structure‐function analysis of CCCP‐1 to identify domains of the protein important for its localization, binding to RAB‐2, and function in DCV biogenesis. We find that the CCCP‐1 C‐terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP‐1 localization and for binding to RAB‐2, and is required for the function of CCCP‐1 in DCV biogenesis. In addition, CCCP‐1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid‐binding motif. We conclude that CCCP‐1 is a coiled‐coil protein that binds an activated Rab and localizes to the Golgi via its C‐terminus, properties similar to members of the golgin family of proteins. CCCP‐1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.   相似文献   

19.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

20.
The assembly of microtubule‐based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin‐2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C‐terminal tail fragments of heterotrimeric kinesin‐2 and α‐tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin‐treated microtubule and LC‐ESI‐MS/MS characterization of the tail‐fragment‐associated tubulin identified an association between the tail domains and α‐tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue‐cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α‐tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non‐particulate form requiring kinesin‐2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号