首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.  相似文献   

4.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   

5.
6.
Bioconversion of xylose—the second most abundant sugar in nature—into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose. However, this entrenched focus on ethanol has concealed the fact that many aspects of xylose metabolism favor the production of nonethanol products. Through reduced overall metabolic flux, a more respiratory nature of consumption, and evading glucose signaling pathways, the bioconversion of xylose can be more amenable to redirecting flux away from ethanol towards the desired target product. In this report, we show that coupling xylose consumption via the oxidoreductive pathway with a mitochondrially-targeted isobutanol biosynthesis pathway leads to enhanced product yields and titers as compared to cultures utilizing glucose or galactose as a carbon source. Through the optimization of culture conditions, we achieve 2.6 g/L of isobutanol in the fed-batch flask and bioreactor fermentations. These results suggest that there may be synergistic benefits of coupling xylose assimilation with the production of nonethanol value-added products.  相似文献   

7.
8.
9.
AIMS: We previously reported that the aldehyde dehydrogenase encoded by ALD3 but not ALD6 was responsible, in part, for the increased acetic acid found in Icewines based on the expression profile of these genes during fermentation. We have now completed the expression profile of the remaining yeast aldehyde dehydrogenase genes ALD2, ALD4 and ALD5 during these fermentations to determine their contribution to acetic acid production. The contribution of acetaldehyde stress as a signal to stimulate ALD expression during these fermentations was investigated for all ALD genes. The expression of glycerol-3-phosphate encoded by GPD2 was also followed during these fermentations to determine its role in addition to the role we already identified for GPD1 in the elevated glycerol produced during Icewine fermentation. METHODS AND RESULTS: Icewine juice (38.5 degrees Brix, 398 +/- 5 g l(-1) sugar), diluted Icewine juice (20.8 degrees Brix, 196 +/- 4 g l(-1) sugar) and the diluted juice with sugar levels equal to the original Icewine juice (36.6 degrees Brix, 395 +/- 6 g l(-1) sugar) were fermented in duplicate using the commercial wine yeast K1-V1116. Acetic acid and glycerol production increased 8.4- and 2.7-fold in the Icewine vs the diluted juice fermentation, respectively, accompanied by a fourfold transient increase in acetaldehyde in the Icewine condition during the first week. Both mitochondrial aldehyde dehydrogenases encoded by ALD4 and ALD5 were expressed, with ALD5 expression highest at the start of all fermentations and ALD4 expression increasing during the first week of each condition. ALD2, ALD4, ALD5 and GPD2 showed no differential expression between the three fermentation conditions indicating their lack of involvement in elevating acetic acid and glycerol in Icewine. When yeast fermenting the diluted fermentation was exposed to exogenous acetaldehyde, the transient spike in acetaldehyde increased the expression of ALD3 but this response alone was not sufficient to cause an increase in acetic acid. Expression of the other aldehyde dehydrogenases was unaffected by the acetaldehyde addition. CONCLUSIONS: The aldehyde dehydrogenases encoded by ALD2, ALD4 and ALD5 do not contribute to the elevated acetic acid production during Icewine fermentation. Expression of GPD2 was not upregulated in high sugar fermentations and does not reflect the elevated levels of glycerol found in these wines. Acetaldehyde at a concentration produced during Icewine fermentation stimulates the expression of ALD3, but has no impact on the expression of ALD2, -4, -5 and -6. Upregulation of ALD3 alone in the dilute fermentation is not sufficient to increase acetic acid in wine and requires additional responses found in cells under hyperosmotic stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This work confirms that increased acetic acid and glycerol production during Icewine fermentation follows upregulation of ALD3 and GPD1 respectively, but upregulation of ALD3 alone is not sufficient to increase acetic acid production. Additional responses of cells under osmotic stress are required to increase acetic acid in Icewine.  相似文献   

10.
金城 《微生物学通报》2012,39(1):0138-0138
微生物细胞通常仅含2%3%油脂,但少数微生物含油脂率却可达70%以上,所以高含油脂量使微生物油脂实际开发成为可能。目前用于生产多不饱和脂肪酸的微生物主要为藻类和真菌。尽管微生物油脂是当前的研究热点,已经引起广大研究者的重视,但目前国内外研究大都集中在含油脂量在干重20%以上的微生物,如浅白色隐性酵母、粘红酵母等,而对于酿酒酵母来说,则很少见到研究其产油脂的相关报道。  相似文献   

11.
12.
Biofilms are natural forms of cell immobilization in which microorganisms attach to solid supports. At ISU, we have developed plastic composite-supports (PCS) (agricultural material (soybean hulls or oat hulls), complex nutrients, and polypropylene) which stimulate biofilm formation and which supply nutrients to the attached microorganisms. Various PCS blends were initially evaluated in repeated-batch culture-tube fermentation with Saccharomyces cerevisiae (ATCC 24859) in low organic nitrogen medium. The selected PCS (40% soybean hull, 5% soybean flour, 5% yeast extract-salt and 50% polypropylene) was then used in continuous and repeated-batch fermentation in various media containing lowered nitrogen content with selected PCS. During continuous fermentation, S. cerevisiae demonstrated two to 10 times higher ethanol production in PCS bioreactors than polypropylene-alone support (PPS) control. S. cerevisiae produced 30 g L−1 ethanol on PCS with ammonium sulfate medium in repeated batch fermentation, whereas PPS-control produced 5 g L−1 ethanol. Overall, increased productivity in low cost medium can be achieved beyond conventional fermentations using this novel bioreactor design. Received 20 May 1997/ Accepted in revised form 29 August 1997  相似文献   

13.
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.  相似文献   

14.
15.
16.
The reversibility of arginine accumulation was followed in exponentially growing cells of Saccharomyces cerevisiae and in the same cells transferred to non-growing energized conditions. Under non-growing conditions the accumulated arginine is retained in the cells while in exponentially growing cells the accumulated radioactivity is released after the addition of high external concentrations of arginine. There are indications that the process is saturable. The accumulated arginine is not exchanged for other related amino acids (l-citrulline, l-histidine). Only l-lysine (a low-affinity substrate of the specific arginine permease) provokes partial radioactivity efflux from the cells. The switch of the arginine-related radioactive label efflux to its complete retention in the cells after changing the growth conditions occurs within a few minutes and is tentatively attributed to two concomitantly occurring events: (1) the actual presence of radioactive arginine (not its metabolite(s)) in the cell and (2) a modification of the specific arginine permease. The specific exchange of arginine described in the present study contrasts with the currently widely accepted opinion of unidirectionality of amino acid fluxes in yeast. The reasons why this phenomenon has not been observed before are discussed.  相似文献   

17.
Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio‐alkane has gained attention as an ideal drop‐in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof‐of‐principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α‐dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12–18 free fatty acids to C11–17 aldehydes. Co‐expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole‐cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232–237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

18.
Acetoin production in Saccharomyces cerevisiae wine yeasts   总被引:4,自引:0,他引:4  
Abstract One hundred strains of Saccharomyces cerevisiae were examined for the capacity to produce acetoin in synthetic medium and in grape must. The low production of acetoin was found to be the more common pattern in this species. Most strains exhibited a similar distribution in both media, production ranging from non-detectable amounts to 12 mg 1−1. Only four strains produced high quantities of acetoin, up to 29.5 mg l−1 in synthetic medium and up to 194.6 mg l−1 in grape must. This biometric study showed the existence of two phenotypes, "low and high acetoin production", that could be selected for conferring a desirable flavour of the final product.  相似文献   

19.
A thermotolerant Saccharomyces cerevisiae yeast strain, YK60‐1, was bred from a parental strain, MT8‐1, via stepwise adaptation. YK60‐1 grew at 40°C, a temperature at which MT8‐1 could not grow at all. YK60‐1 exhibited faster growth than MT8‐1 at 30°C. To investigate the mechanisms how MT8‐1 acquired thermotolerance, DNA microarray analysis was performed. The analysis revealed the induction of stress‐responsive genes such as those encoding heat shock proteins and trehalose biosynthetic enzymes in YK60‐1. Furthermore, nontargeting metabolome analysis showed that YK60‐1 accumulated more trehalose, a metabolite that contributes to stress tolerance in yeast, than MT8‐1. In conclusion, S. cerevisiae MT8‐1 acquired thermotolerance by induction of specific stress‐responsive genes and enhanced intracellular trehalose levels. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1116–1123, 2013  相似文献   

20.
Fusions of the glycolytic genes TPI1, PGK1, ENO1, PYK1, PDC1, and ADH1 with the lacZ reporter gene of Escherichia coli and a lacZ fusion construct of a 390-bp fragment from the promoter of the HXT7 gene were assayed for β-galactosidase activity. The glycolytic promoters were induced after addition of glucose to ethanol-grown cells, whereas the HXT7 promoter fragment showed a constitutive β-galactosidase expression on both carbon sources. The genes coding for the seven enzymes of lower glycolysis Tdh, Pgk, Gpm, Eno, Pyk, Pdc, and Adh were simultaneously put under the control of the same strong promoter, a truncated HXT7 promoter that is constitutively active on ethanol as well as on glucose medium. Genomic expression of the glycolytic genes under the control of this promoter, resulted in an at least 2-fold overexpression. The gene MSG5 was isolated, coding for a protein phosphatase normally involved in cell cycle regulation, as a factor that possibly influences the expression of the HXT7 gene. However, overexpression of MSG5 had no effect on the expression of the HXT7/lacZ fusion, whereas a deletion of this gene resulted in a decreased expression of β-galactosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号