首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Peripheral arterial disease (PAD) can further cause lower limb ischemia. Quantitative evaluation of the vascular perfusion in the ischemic limb contributes to diagnosis of PAD and preclinical development of new drug. In vivo time‐series indocyanine green (ICG) fluorescence imaging can noninvasively monitor blood flow and has a deep tissue penetration. The perfusion rate estimated from the time‐series ICG images is not enough for the evaluation of hindlimb ischemia. The information relevant to the vascular density is also important, because angiogenesis is an essential mechanism for post‐ischemic recovery. In this paper, a multiparametric evaluation method is proposed for simultaneous estimation of multiple vascular perfusion parameters, including not only the perfusion rate but also the vascular perfusion density and the time‐varying ICG concentration in veins. The target method is based on a mathematical model of ICG pharmacokinetics in the mouse hindlimb. The regression analysis performed on the time‐series ICG images obtained from a dynamic reflectance fluorescence imaging system. The results demonstrate that the estimated multiple parameters are effective to quantitatively evaluate the vascular perfusion and distinguish hypo‐perfused tissues from well‐perfused tissues in the mouse hindlimb. The proposed multiparametric evaluation method could be useful for PAD diagnosis.

The estimated perfusion rate and vascular perfusion density maps (left) and the time‐varying ICG concentration in veins of the ankle region (right) of the normal and ischemic hindlimbs.  相似文献   


3.
The effect of different cell culture conditions on N‐glycosylation site‐occupancy has been elucidated for two different recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells, recombinant human tissue plasminogen activator (t‐PA) and a recombinant enzyme (glycoprotein 2—GP2). Both molecules contain a N‐glycosylation site that is variably occupied. Different environmental factors that affect the site‐occupancy (the degree of occupied sites) of these molecules were identified. Supplementing the culture medium with additional manganese or iron increased the fraction of fully occupied t‐PA (type I t‐PA) by approximately 2.5–4%. Decreasing the cultivation temperature from 37 to 33°C or 31°C gradually increased site‐occupancy of t‐PA up to 4%. The addition of a specific productivity enhancer, butyrate, further increased site‐occupancy by an additional 1% under each cultivation temperature tested. In addition, the thyroid hormones triiodothyronine and thyroxine increased site‐occupancy of t‐PA compared to control conditions by about 2%. In contrast, the addition of relevant nucleoside precursor molecules involved in N‐glycan biosynthesis (e.g., uridine, guanosine, mannose) either had no effect or slightly reduced site‐occupancy. For the recombinant enzyme (GP2), it was discovered that culture pH and the timing of butyrate addition can be used to control N‐glycan site‐occupancy within a specific range. An increase in culture pH correlated with a decrease in site‐occupancy. Similarly, delaying the timing for butyrate addition also decreased site‐occupancy of this molecule. These results highlight the importance of understanding how cell culture conditions and media components can affect the product quality of recombinant glycoproteins expressed in mammalian cell cultures. Furthermore, the identification of relevant factors will enable one to control product quality attributes, specifically N‐glycan site‐occupancy, within a specific range when applied appropriately. Biotechnol. Bioeng. 2009;103: 1164–1175. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
5.
The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency‐based time‐series analysis, with high‐resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda (Ailuropoda melanoleuca). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24‐hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high‐resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.  相似文献   

6.
The human bone morphogenetic protein‐2 (hBMP2) is a glycoprotein, which induces de novo bone formation. Here, recombinant production in stably transfected Chinese Hamster Ovary (CHO) cells is compared to transient expression in Human Embryo Kidney (HEK) cells and cell‐free synthesis in CHO cell lysates containing microsomal structures as sites of post‐translational processing. In case of the stably transfected cells, growth rates and viabilities were similar to those of the parent cells, while entry into the death phase of the culture was delayed. The maximum achievable rhBMP2 concentration in these cultures was 153 pg/mL. Up to 280 ng/mL could be produced in the transient expression system. In both cases the rhBMP‐2 was found to interact with the producer cells, which presumably contributed to the low yields. In the cell‐free system, hBMP2 yields could be increased to almost 40 μg/mL, reached within three hours. The cell‐free system thus approached productivities for the active (renatured) protein previously only recorded for bacterial hosts, while assuring comprehensive post‐translational processing.  相似文献   

7.
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites—including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides—in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi‐platform mass spectrometry workflow enabled metabolite profiling every 30–120 min across a 24‐h diurnal sinusoidal LD (‘sinLD’) cycle peaking at 1600 μmol photons m?2 sec?1. We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi‐polar, non‐polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day‐to‐night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.  相似文献   

8.
9.
Genetically identical cells in a uniform external environment can exhibit different phenotypes, which are often masked by conventional measurements that average over cell populations. Although most studies on this topic have used microorganisms, differentiated mammalian cells have rarely been explored. Here, we report that only approximately 40% of clonal human embryonic kidney 293 cells respond with an intracellular Ca2+ increase when ryanodine receptor Ca2+ release channels in the endoplasmic reticulum are maximally activated by caffeine. On the other hand, the expression levels of ryanodine receptor showed a unimodal distribution. We showed that the difference in the caffeine sensitivity depends on a critical balance between Ca2+ release and Ca2+ uptake activities, which is amplified by the regenerative nature of the Ca2+ release mechanism. Furthermore, individual cells switched between the caffeine‐sensitive and caffeine‐insensitive states with an average transition time of approximately 65 h, suggestive of temporal fluctuation in endogenous protein expression levels associated with caffeine response. These results suggest the significance of regenerative mechanisms that amplify protein expression noise and induce cell‐to‐cell phenotypic variation in mammalian cells.  相似文献   

10.
Industrial CHO cell cultures run under fed‐batch conditions are required to be controlled in particular ranges of glucose, while glucose is constantly consumed and must be replenished by a feed. The most appropriate feeding rate is ideally stoichiometric and adaptive in nature to balance the dynamically changing rate of glucose consumption. However, high errors in biomass and glucose estimation as well as limited knowledge of the true metabolic state challenge the control strategy. In this contribution, we take these errors into account and simulate the output with uncertainty trajectories in silico in order to control glucose concentration. Other than many control strategies, which require parameter estimation, our assumptions are founded on two pillars: (i) first principles and (ii) prior knowledge about the variability of fed‐batch CHO cell culture. The algorithm was exposed to an in‐silico Design of Experiments (DoE), in which variations of parameters were changed simultaneously, such as clone‐specific behavior, precision of equipment and desired control range used. The results demonstrate that our method achieved the target of holding the glucose concentration within an acceptable range. A robust and sufficient level of control could be demonstrated even with high errors for biomass or metabolic state estimation. In a time where blockbuster drugs are queuing up for time slots of their production, this transferable control strategy that is independent of tedious establishment runs may be a decisive advantage for rapid implementation during technology transfer and scale up and decrease in campaign change over time. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:317–336, 2017  相似文献   

11.
Single‐use bioprocessing bags are gaining popularity due to ease of use, lower risk of contamination, and ease of process scale‐up. Bis(2,4‐di‐tert‐butylphenyl)phosphate (bDtBPP), a degradant of tris(2,4‐di‐tert‐butylphenyl)phosphite, marketed as Irgafos 168®, which is an antioxidant stabilizer added to resins, has been identified as a potentially toxic leachate which may impact the performance of single‐use, multilayer bioprocessing bags. In this study, the toxicity of bDtBPP was tested on CHO‐K1 cells grown as adherent or suspended cells. The EC50 (effective concentration to cause 50% cell death) for adherent cells was found to be one order of magnitude higher than that for suspended CHO‐K1 cells. While CHO‐K1 cells had good cell viability when exposed to moderate concentrations of bDtBPP, the degradant was shown to impact the viable cell density (VCD) at much lower concentrations. Hence, in developing an industry‐standard assay for testing the cytotoxicity of leachates, suspended cells (as commonly used in the bioprocessing industry) would likely be most sensitive, particularly when reporting EC50 values based on VCD. The effects of mixing, cell culture volume, and exposure duration were also evaluated for suspended CHO‐K1 cells. It was found that the sensitivity of cell culture to leachates from single‐use plastic bags was enhanced for suspended cells cultured for longer exposure times and when the cells were subjected to continuous agitation, both of which are important considerations in the production of biopharmaceuticals. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1318–1323, 2016  相似文献   

12.
13.
There are currently two methods for maintaining cultured mammalian cells, continuous passage at 37 degrees C and freezing in small batches. We investigated a third approach, the "pausing" of cells for days or weeks at temperatures below 37 degrees C in a variety of cultivation vessels. High cell viability and exponential growth were observed after pausing a recombinant Chinese hamster ovary cell line (CHO-Clone 161) in a temperature range of 6-24 degrees C in microcentrifuge tubes for up to 3 weeks. After pausing in T-flasks at 4 degrees C for 9 days, adherent cultures of CHO-DG44 and human embryonic kidney (HEK293 EBNA) cells resumed exponential growth when incubated at 37 degrees C. Adherent cultures of CHO-DG44 cells paused for 2 days at 4 degrees C in T-flasks and suspension cultures of HEK293 EBNA cells paused for 3 days at either 4 degrees C or 24 degrees C in spinner flasks were efficiently transfected by the calcium phosphate-DNA coprecipitation method, yielding reporter protein levels comparable to those from nonpaused cultures. Finally, cultures of a recombinant CHO cell line (CHO-YIgG3) paused for 3 days at 4 degrees C, 12 degrees C, or 24 degrees C in bioreactors achieved the same cell mass and recombinant protein productivity levels as nonpaused cultures. The success of this approach to cell storage with rodent and human cell lines points to a general biological phenomenon which may have a wide range of applications for cultivated mammalian cells.  相似文献   

14.
To understand the intracellular responses in recombinant Chinese hamster ovary (rCHO) cells adapted to grow in serum‐free suspension culture, a proteomic approach was employed. After rCHO cells producing erythropoietin were adapted to grow in suspension culture with the two different serum‐free media (SFM4CHO? and SF‐L1), proteome analyses were carried out using 2‐D PAGE and based on spot intensities, 58 high‐intensity protein spots were selected. Of the 58 protein spots, which represented 34 different kinds of proteins, 55 were identified by MALDI‐TOF‐MS, and MS/MS. Compared with the results in serum‐containing medium, six proteins, four de novo synthesis of nucleotides‐related proteins (dihydrolipoamide S‐acetyltransferase, transaldolase, inosine‐5′‐monophosphate dehydrogenase 2, and lymphoid‐restricted membrane protein) and two molecular chaperones (heat shock protein 70 kDa and 60 kDa [HSC70, HSP60]) were significantly increased in SFM4CHO?. From the results of proteomic analysis, HSP60 and HSC70, which were increased in both SFM, were selected as candidate proteins for engineering and rCHO cell lines overexpressing these genes were constructed. Cells overexpressing HSP60 and/or HSC70 showed 10–15% enhanced cell concentration during serum‐free adaptation and 15–33% reduction in adaptation time. Taken together, identification of differentially expressed proteins in rCHO cells by a proteomic study can provide insights into understanding the intracellular events and clues to find candidate genes for cell engineering for improved performance of rCHO cells during adaptation to serum‐free suspension culture. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
A common problem with observational datasets is that not all events of interest may be detected. For example, observing animals in the wild can difficult when animals move, hide, or cannot be closely approached. We consider time series of events recorded in conditions where events are occasionally missed by observers or observational devices. These time series are not restricted to behavioral protocols, but can be any cyclic or recurring process where discrete outcomes are observed. Undetected events cause biased inferences on the process of interest, and statistical analyses are needed that can identify and correct the compromised detection processes. Missed observations in time series lead to observed time intervals between events at multiples of the true inter‐event time, which conveys information on their detection probability. We derive the theoretical probability density function for observed intervals between events that includes a probability of missed detection. Methodology and software tools are provided for analysis of event data with potential observation bias and its removal. The methodology was applied to simulation data and a case study of defecation rate estimation in geese, which is commonly used to estimate their digestive throughput and energetic uptake, or to calculate goose usage of a feeding site from dropping density. Simulations indicate that at a moderate chance to miss arrival events (p = 0.3), uncorrected arrival intervals were biased upward by up to a factor 3, while parameter values corrected for missed observations were within 1% of their true simulated value. A field case study shows that not accounting for missed observations leads to substantial underestimates of the true defecation rate in geese, and spurious rate differences between sites, which are introduced by differences in observational conditions. These results show that the derived methodology can be used to effectively remove observational biases in time‐ordered event data.  相似文献   

16.
This article describes a cell banking process for rBHK cell lines in 100‐mL cryobags. As the use of larger volume cell banks requires greater cell numbers and longer preparation time, extensive characterization of key process parameters beyond the conventional ranges was performed to support a cGMP banking process. All experiments were conducted using two recombinant BHK21 cell lines, one of them cotransfected with Hsp70. The results show that the entire cell banking process for these BHK cell lines can be performed at room temperature. A DMSO exposure time up to 5 h either directly in a bioreactor or in shaker flasks did not result in any significant negative effect after cell thaw, when the cryocontainers were frozen immediately after filling. Extensive characterization did not indicate any significant apoptotic effects after thaw. However, the Hsp70 cotransfected cell line did show a slightly better protection from potential cryopreservation‐induced apoptosis. Surprisingly, it was found that cells transferred into cryobags showed a low recovery rate after thaw if the incubation time exceeded 1.5 h before freezing. Additional experiments confirmed that the DMSO exposure time inside the cryocontainer in contrast to the DMSO exposure in a reactor or shaker flasks is much more critical. The cryobag cell banking process should therefore be performed within a 1½–2 h window; a banking process for vials should not exceed 2½ h. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
The species‐area relationship (SAR) has proven to be one of the few strong generalities in ecology. The temporal analog of the SAR, the species‐time relationship (STR), has received considerably less attention. Recent work primarily from the temperate zone has aimed to merge the SAR and the STR into a synthetic and unified species‐time‐area relationship (STAR) as originally envisioned by Preston (1960). Here we test this framework using two tropical tree communities and extend it by deriving a phylogenetic‐time‐area relationship (PTAR). The work finds some support for Preston's prediction that diversity‐time relationships, both species and phylogenetic, are sensitive to the spatial scale of the sampling. Contrary to the Preston's predictions we find a decoupling of diversity‐area and diversity‐time relationships in both forests as the time period used to quantify the diversity‐area relationship changes. In particular, diversity‐area and diversity‐time relationships are positively correlated using the initial census to quantify the diversity‐area relationship, but weakly or even negatively correlated when using the most recent census. Thus, diversity‐area relationships could forecast the temporal accumulation of biodiversity of the forests, but they failed to “back‐cast” the temporal accumulation of biodiversity suggesting a decoupling of space and time.  相似文献   

18.
19.
20.
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS‐1) and human umbilical vein endothelial cells (HUVEC) co‐cultured in fibrin over INS‐1 cell insulin secretion. For this purpose, a three‐dimensional (3D) cell culture chamber was designed, built using micro‐fabrication techniques and validated. The co‐culture was successfully carried out and the effect on INS‐1 cell insulin secretion was investigated. After 48 and 72 h, INS‐1 cells co‐cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS‐1 cells cultured alone or co‐cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Biotechnol. Bioeng. 2013; 110: 619–627. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号