首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of IMP dehydrogenase (IMP DH), the rate-limiting enzyme of de novo GTP biosynthesis, was shown to be increased in cancer cells. Tiazofurin, an inhibitor of IMP dehydrogenase, proved to be an effective agent in the treatment of refractory granulocytic leukemia. To examine the cell cycle dependent alterations of GTP synthesis and sensitivities to tiazofurin, we measured IMP DH activities and GTP pools, as well as the effects of tiazofurin on cell cycle phase enriched HL-60 cells. We now show that IMP DH activities and GTP concentrations are increased in S-phase enriched fractions of HL-60 cells. Moreover, the depletion of GTP concentrations by tiazofurin is most effective in S-phase enriched HL-60 cells. These results may be utilized in cancer chemotherapy to combine tiazofurin with biologic response modifiers which recruit quiescent leukemic cells into the cell cycle.  相似文献   

2.
Tiazofurin, a C-nucleoside, was cytotoxic in hepatoma 3924A cells grown in culture with an LC50 = 7.5 microM. In the culture, a closely linked dose-related response of tumor cell-kill and depletion of GTP pools was observed after tiazofurin treatment. In rats carrying subcutaneously transplanted hepatoma 3924A solid tumors, a single intraperitoneal injection of tiazofurin (200 mg/kg) caused a rapid inhibition of IMP dehydrogenase (EC 1.2.1.14) activity and depleted GDP, GTP, and dGTP pools in the tumor; concurrently, the 5-phosphoribosyl 1-pyrophosphate (PRPP) and IMP pools expanded 8- and 15-fold, respectively. Tiazofurin decreased tumoral IMP dehydrogenase activity and dGTP pools in a dose-dependent manner over a range of 50-200 mg/kg; by contrast, the depletion of GTP and the accumulation of IMP and PRPP pools were near maximum at 50 mg/kg. The increase in PRPP pools may be attributed to an inhibition by IMP of the activity of hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8). The IMP dehydrogenase activity and the pools of ribonucleotides returned to the normal range by 24-48 h after the single injection of tiazofurin. However, the markedly depleted dGTP pools remained low for 72 h. Tiazofurin treatment resulted in significant anti-tumor activity in rats inoculated with hepatoma 3924A. The decrease in GTP levels and particularly the sustained depletion in the dGTP pools may explain, in part at least, the chemo-therapeutic action of tiazofurin on hepatoma 3924A. This is the first report showing that a marked therapeutic response was achieved against rapidly growing hepatoma 3924A by treatment with a single anti-metabolite.  相似文献   

3.
Tiazofurin, an anti-cancer drug, which induces remissions in human leukemia, and ribavirin, an anti-viral agent, bind at separate sites (NADH and IMP-XMP sites, respectively) on the target enzyme, IMP dehydrogenase. Now we show that the binding to IMP dehydrogenase of these drugs at two separate sites is translated into synergistic inhibition of de novo guanylate biosynthesis and synergistic toxicity in rat hepatoma 3924A cells. These results may be utilized in the chemotherapy of neoplastic diseases and in the treatment of hepatitis virus infection and hepatocellular carcinoma.  相似文献   

4.
Thiamine is shown to have a stimulatory action on ++alcohol dehydrogenase activity in blood and small intestines of white rats. The same effect is obtained on the purified ++alcohol dehydrogenase as well. Thiochrome inhibits the enzyme preparation.  相似文献   

5.
On the basis of potent biological activity of 3'-branched-3'-deoxynucleoside analogues, novel ribavirin and tiazofurin derivatives with 3'-C-hydroxymethyl substituent were synthesized, starting from D-xylose.  相似文献   

6.
It is shown that thiamine and its metabolites effect lactate dehydrogenase activity and lactate content in the tissues. Thiochrome and thiamine phosphate increase the lactate level in the liver and small intestine. The given effect correlates with the inhibition of the tissue and purified lactate dehydrogenase by thiochrome.  相似文献   

7.
IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.  相似文献   

8.
We screened the inhibitor of mouse inosine 5'-monophosphate dehydrogenase (IMPDH) type II from natural compounds, and found that a fatty acid, linoleic acid (C18:2), inhibited IMPDH activity. In the C18:2 fatty acid derivatives, all trans-configuration (i.e., linoelaidic acid), ester form, alcohol form, and addition of the hydroxyl group of linoleic acid had no effect on inhibitory activity. Therefore, both parts of a carboxylic acid and an alkyl chain containing cis-type double bonds of fatty acid might be essential for inhibition. Among the various carbon atom lengths and double bonds of fatty acids examined, the strongest inhibitor was C20:2-fatty acid, eicosadienoic acid, and 50% inhibition was observed at a concentration of 16.1 microM. Eicosadienoic acid induced the inhibition of IMPDH activity and was competitive with respect to IMP (K(i)=3.1 microM). For inhibitory effect, the C20-fatty acids ranked as follows: C20:2>C20:3>C20:1> C20:4>C20:5, and C20:0 showed no inhibition. The energy-minimized three-dimensional structures of linear-chain C20-fatty acids were calculated, and it was found that a length of 20.7-22.5A and width of 4.7-7.2A in the fatty acid molecular structure was suggested to be important for IMPDH inhibition. Docking simulation of C20-fatty acids and mouse IMPDH type II, which was homology modeled from human IMPDH type II (PDB code: 1NF7), was performed, and the fatty acid could bind to Cys331, which is a amino acid residue of the active site, competitively with IMP. Based on these results, the IMPDH-inhibitory mechanism of fatty acids is discussed.  相似文献   

9.
10.
To study the induction of differentiation in human melanoma cells, we treated 12 melanoma cell lines with mycophenolic acid and tiazofurin, inhibitors of IMP dehydrogenase (IMPDH). In all cell lines studied, both agents inhibited cell growth and increased melanin content. However, the degree of growth inhibition did not necessarily correspond to the increase in melanin content. A detailed analysis of the HO and SK-MEL-131 cell lines indicated that mycophenolic acid and tiazofurin caused a time- and dose-dependent increase in the expression of a series of other maturation markers, including formation of dendrite-like structures, tyrosinase activity, and reactivity with the CF21 monoclonal antibody. The growth inhibition and melanogenesis induced by the IMPDH inhibitors was abrogated by the addition of exogenous guanosine. No such effect was observed after treatment of the cells with phorbol 12-myristate 13-acetate or retinoic acid, two other inducers of differentiation in these cells. The mycophenolic acid- and tiazofurin-treated cells also showed an increased level of IMPDH mRNA and protein, perhaps because of compensation for the inhibitor-mediated decrease in IMPDH activity. In contrast, treatment with phorbol 12-myristate 13-acetate or retinoic acid resulted in decreased levels of IMPDH mRNA and protein. The lack of a consistent pattern of IMPDH expression in the cells treated with IMPDH inhibitors and phorbol 12-myristate 13-acetate or retinoic acid suggests that the altered expression of IMPDH is not a general requirement for the induction of cell differentiation in these cells. Our results also suggest that IMPDH inhibitors may provide a useful approach to circumvent the differentiation block in melanoma.  相似文献   

11.
Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s−1M−1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.  相似文献   

12.
13.
It is not yet clear to what extent depletion of intracellular GTP pools contributes to the antiviral activity of ribavirin. Therefore, the antiviral activities of (i) ribavirin, (ii) its 5-ethynyl analogue, 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), and (iii) mycophenolic acid (MPA) (a compound that inhibits only cellular IMP dehydrogenase activity) were studied on the replication of flaviviruses and paramyxoviruses. In addition, the effects of these three compounds on intracellular GTP pools were assessed. A linear correlation was observed over a broad concentration range between the antiviral activities of ribavirin, EICAR, and MPA and the effects of these compounds on GTP pool depletion. When the 50% effective concentrations (EC50s) for the antiviral activities of ribavirin, EICAR, and MPA were plotted against the respective EC50 values for GTP pool depletion, a linear correlation was calculated. These data provide compelling evidence that the predominant mechanism of action of ribavirin in vitro against flavi- and paramyxoviruses is based on inhibition of cellular IMP dehydrogenase activity.  相似文献   

14.
Textbooks describe enzymes as relatively rigid templates for the transition state of a chemical reaction, and indeed an enzyme such as chymotrypsin, which catalyzes a relatively simple hydrolysis reaction, is reasonably well described by this model. Inosine monophosphate dehydrogenase (IMPDH) undergoes a remarkable array of conformational transitions in the course of a complicated catalytic cycle, offering a dramatic counterexample to this view. IMPDH displays several other unusual mechanistic features, including an Arg residue that may act as a general base catalyst and a dynamic monovalent cation site. Further, IMPDH appears to be involved in 'moon-lighting' functions that may require additional conformational states. How the balance between conformational states is maintained and how the various conformational states interconvert is only beginning to be understood.  相似文献   

15.
16.
The gene of IMP dehydrogenase of Bacillus cereus ts-4, a temperature-sensitive mutant of B. cereus JCM 2152, was subcloned and its sequence was analyzed. A B. cereus ts-4 DNA fragment of 2,065 bp containing the entire impdh gene and flanking regions was sequenced. The fragment contained an open reading frame of 1,527 bp encoding 509 amino acids with a calculated molecular mass of 55,390 Da. The impdh sequence of JCM 2152 was also analyzed by TA cloning using PCR products amplified with primers from B. cereus ts-4 impdh gene. The gene amplified by PCR was expressed in Escherichia coli using a pET17 x b expression plasmid. The N-terminal amino acid sequence of the overproduced enzyme was identified as Met-Trp-Glu-Ser-Lys-Phe-Val-Lys-Glu-Gly-Leu-Thr-Phe-AspAsp-Val-Leu -Leu-Val- Pro. The overproduced enzyme was eluted at a molecular mass of about 225 kDa by gel filtration. The molecular mass of the subunit was estimated to be 56 kDa by SDS-PAGE. The overproduced enzyme was active against IMP, IDP, and ITP, and showed the highest activity at pH 9.5. These properties of the recombinant enzyme were almost identical to those of IMP dehydrogenase of B. cereus.  相似文献   

17.
18.
T Ikegami  Y Natsumeda  G Weber 《Life sciences》1987,40(23):2277-2282
IMP dehydrogenase (EC 1.1.1.205), the rate-limiting enzyme of de novo GTP biosynthesis and a promising target for cancer chemotherapy, was purified 4860-fold to homogeneity from rat hepatoma 3924A by a method including affinity chromatography in which IMP is bound to epoxy-activated Sepharose 6B. This affinity gel provided a specific elution of the enzyme with 0.5 mM IMP. The final enzyme preparation gave a single band with a molecular weight of 60,000 +/- 1000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号