首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Growth of Vibrio anguillarum in Salmon Intestinal Mucus   总被引:3,自引:0,他引:3       下载免费PDF全文
The physiological changes of Vibrio anguillarum in response to growth in salmon intestinal mucus were investigated. Growth, survival, and changes in protein expression during growth in media supplemented with mucus were compared to growth and starvation in the identical media without mucus. V. anguillarum exhibited a rapid decline in CFU following growth in mucus as the sole carbon source. No such decline was observed in Luria broth with a 2% NaCl concentration, in glucose-minimal broth (3M), or during starvation in a carbon-, nitrogen-, and phosphorus-free salt solution (NSS). The changes in protein expression during growth in mucus were examined by labeling cells with [(sup35)S]methionine and analyzing the labeled proteins by one- and two-dimensional gel electrophoresis and autoradiography. Comparison of [(sup35)S]methionine-labeled proteins from mucus-grown cells with 3M-grown cells and NSS-starved cells revealed four de novo mucus-inducible proteins (Mips). These Mips were localized in the membrane fraction of V. anguillarum. Additionally, at least one other membrane protein was found to have increased expression in response to growth in mucus.  相似文献   

2.
The effect of gastrointestinal mucus on protease activity in Vibrio anguillarum was investigated. Protease activity was measured by using an azocasein hydrolysis assay. Cells grown to stationary phase in mucus (200 μg of mucus protein/ml) exhibited ninefold-greater protease activity than cells grown in Luria-Bertani broth plus 2% NaCl (LB20). Protease induction was examined with cells grown in LB20 and resuspended in mucus, LB20, nine-salts solution (NSS [a carbon-, nitrogen-, and phosphorus-free salt solution]), or marine minimal medium (3M) (~109 CFU/ml). Induction of protease activity occurred 60 to 90 min after addition of mucus and was ≥70-fold greater than protease activity measured in cells incubated in either LB20 or 3M. Mucus was fractionated into aqueous and chloroform-methanol-soluble fractions. The aqueous fraction supported growth of V. anguillarum cells, but did not induce protease activity. The chloroform-methanol-soluble fraction did not support growth, nor did it induce protease activity. When the two fractions were mixed, protease activity was induced. The chloroform-methanol-soluble fraction did not induce protease activity in cells growing in LB20. EDTA (50 mM) inhibited the protease induced by mucus. Upon addition of divalent cations, Mg2+ (100 mM) was more effective than equimolar amounts of either Ca2+ or Zn2+ in restoring activity, suggesting that the mucus-inducible protease was a magnesium-dependent metalloprotease. An empA mutant strain of V. anguillarum did not exhibit protease activity after exposure to mucus, but did grow in mucus. Southern analysis and PCR amplification confirmed that V. anguillarum M93 contained empA. These data demonstrate that the empA metalloprotease of V. anguillarum is specifically induced by gastrointestinal mucus.  相似文献   

3.
The role of the flagellum and motility in the virulence of the marine fish pathogen Vibrio anguillarum was examined. Non-motile mutants were generated by transposon mutagenesis. Infectivity studies revealed that disruption of the flagellum and subsequent loss of motility correlated with an approximate 500-fold decrease in virulence when fish were inoculated by immersion in bacteria-containing water. However, the flagellar filament and motility were not required for pathogenicity following intraperitoneal injection of fish. The transposon-insertion site for six mutants was determined by cloning and sequencing of the Vibrio DNA flanking the transposon. V. anguillarum genes whose products showed strong homology to proteins with an established role in flagellum biosynthesis were identified. One of the aflagellate mutants had a transposon insertion in the rpoN gene of V. anguillarum . This rpoN mutant failed to grow at low concentrations of available iron and was avirulent by both the immersion and intraperitoneal modes of inoculation. A chemotaxis gene, cheR , was located upstream of one transposon insertion and an in-frame deletion was constructed in the coding region of this gene. The resulting non-chemotactic mutant exhibited wild-type pathogenicity when injected intraperitoneally into fish but showed a decrease in virulence similar to that seen for the non-motile aflagellate mutants following immersion infection. Hence, chemotactic motility is a required function of the flagellum for the virulence of V. anguillarum  相似文献   

4.
5.
鳗弧菌毒力质粒DNA序列的测定   总被引:4,自引:0,他引:4  
采用亚克隆法与引物步移法相结合的测序战略 ,对海洋鱼类重要病原菌鳗弧菌毒力质粒pEIB1进行序列测定 ,测得整个质粒序列长度为 6 6 16 4bp。序列的初步分析结果表明 ,G C含量为 4 2 .7% ,共有 4 4个可读框 (ORF) ,其中包括与铁载体合成、调节、运输以及质粒复制相关的基因。  相似文献   

6.
As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.  相似文献   

7.
Synthesis and hydrolysis of septal peptidoglycan (PG) are critical processes at the conclusion of cell division that enable separation of daughter cells. Cleavage of septal PG is mediated by PG amidases, hydrolytic enzymes that release peptide side chains from the glycan strand. Most gammaproteobacteria, including Escherichia coli, encode several functionally redundant periplasmic amidases. However, members of the Vibrio genus, including the enteric pathogen Vibrio cholerae, encode only a single PG amidase, AmiB. Here, we show that V. cholerae AmiB is crucial for cell division and growth. Genetic and biochemical analyses indicated that AmiB is regulated by two activators, EnvC and NlpD, at least one of which is required for AmiB''s localization to the cell division site. Localization of the activators (and thus of AmiB) is dependent upon the cell division protein FtsN. These factors mediate septal PG cleavage in E. coli as well; however, their precise roles vary between the two organisms in a number of ways. Notably, even though V. cholerae EnvC and NlpD appear to be functionally redundant under most growth conditions tested, NlpD is specifically required for intestinal colonization in the infant mouse model of cholera and for V. cholerae resistance against bile salts, perhaps due to environmental regulation of AmiB or its activators. Collectively, our findings reveal that although the cellular components that enable cleavage of septal PG appear to be generally conserved between E. coli and V. cholerae, they can be combined into diverse functional regulatory networks.  相似文献   

8.
9.
10.
11.
To understand further the role of the flagellum of Vibrio anguillarum in virulence, invasive and adhesive properties of isogenic motility mutants were analyzed by using a chinook salmon embryo cell line. Adhesion was unaffected but invasion of the cell line was significantly decreased in nonmotile or partially motile mutants, and the chemotactic mutant was hyperinvasive. These results suggest that active motility aids invasion by V. anguillarum, both in vivo and in vitro.  相似文献   

12.
Chuiko  N. V.  Antonyuk  T. S.  Kurdish  I. K. 《Microbiology》2002,71(4):391-396
The investigation of the chemotactic response of Bradyrhizobium japonicum to amino acids, carbohydrates, multiatomic alcohols, organic acids, and soybean extracts showed that the extracts of some soybean varieties (Chernoburaya and Beskluben'kovaya) contain repellents. This indicates that the soybeans of host plants contain effectors that may play a role at the early stages of their interaction with nodule bacteria.  相似文献   

13.
Pseudomonas aeruginosa exhibited positive chemotaxis to glutamate, alanine, and arginine in a nutrient semisolid nitrate medium.  相似文献   

14.
Mechanotransduction modulates cellular functions as diverse as migration, proliferation, differentiation, and apoptosis. It is crucial for organ development and homeostasis and leads to pathologies when defective. However, despite considerable efforts made in the past, the molecular basis of mechanotransduction remains poorly understood. Here, we have investigated the genetic basis of mechanotransduction in Drosophila. We show that the fly heart senses and responds to mechanical forces by regulating cardiac activity. In particular, pauses in heart activity are observed under acute mechanical constraints in vivo. We further confirm by a variety of in situ tests that these cardiac arrests constitute the biological force-induced response. In order to identify molecular components of the mechanotransduction pathway, we carried out a genetic screen based on the dependence of cardiac activity upon mechanical constraints and identified Painless, a TRPA channel. We observe a clear absence of in vivo cardiac arrest following inactivation of painless and further demonstrate that painless is autonomously required in the heart to mediate the response to mechanical stress. Furthermore, direct activation of Painless is sufficient to produce pauses in heartbeat, mimicking the pressure-induced response. Painless thus constitutes part of a mechanosensitive pathway that adjusts cardiac muscle activity to mechanical constraints. This constitutes the first in vivo demonstration that a TRPA channel can mediate cardiac mechanotransduction. Furthermore, by establishing a high-throughput system to identify the molecular players involved in mechanotransduction in the cardiovascular system, our study paves the way for understanding the mechanisms underlying a mechanotransduction pathway.  相似文献   

15.
Negative chemotaxis refers to the motion of microorganisms away from regions with high concentrations of chemorepellents. In this study, we set controlled gradients of NiCl2, a chemorepellent, in microchannels to quantify the motion of Escherichia coli over a broad range of concentrations. The experimental technique measured the motion of the bacteria in space and time and further related the motion to the local concentration profile of the repellent. Results show that the swimming speed of bacteria increases with an increasing concentration of repellent, which in turn enhances the drift velocity. The contribution of the increased swimming speed to the total drift velocity was in the range of 20 to 40%, with the remaining contribution coming from the modulation of the tumble frequency. A simple model that incorporates receptor dynamics, including adaptation, intracellular signaling, and swimming speed variation, was able to qualitatively capture the observed trend in drift velocity.  相似文献   

16.
快速、高效删除大肠杆菌染色体DNA的目的基因是大肠杆菌代谢工程研究的前提和基础。利用Red重组系统结合Xer重组系统删除了野生型大肠杆菌CICIM B0013的ackA-pta基因和pps基因。实验证明了可重复应用dif位点实现大肠杆菌染色体上多基因突变的叠加,同时,在染色体上并未留下抗生素标记,借此能够高效地实现多基因缺失突变株的构建。此外,本方法重组效率高,实验步骤较简便。  相似文献   

17.

Background

Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s) to induce interleukin-8 (IL-8) production by human intestinal epithelial cells. The aim was to identify the secreted component(s) of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV.

Methodology/Principal Findings

Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC) were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-α (TNF-α) secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis.

Conclusions/Significance

We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-α in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.  相似文献   

18.
Vibrio anguillarum strains were isolated from chloramphenicol-resistant bacteria in diseased fish. Plasmid Rms418, which confers chloramphenicol resistance, was transferred from V. anguillarum GN11379 to Escherichia coli K12 by conjugation. The Rms418-encoded chloramphenicol acetyltransferase (CAT) [EC 2.3.1.99] was isolated and purified to homogeneity using affinity chromatography on immobilized p-amino-chloramphenicol or ATP. The general CAT could be adsorbed by a matrix with a chloramphenicol base ligand (Zaidenzaig, Y. & Shaw, W.V. (1976) FEBS Lett. 62,266-271), but the Rms418-encoded CAT was not bound under these conditions. The specific activity of the enzyme, when measured by the spectrophotometric assay, was 71.4 units/mg protein at 37 degrees C. The molecular weight of the enzyme treated with SDS and 2-mercaptoethanol was shown to be approximately 22,000. The molecular weight of the native enzyme, as determined by gel filtration, was approximately 69,000, and the optimal pH was 7.8. The Km values for chloramphenicol and CoASAc were 34.5 and 150 microM, respectively. Enzyme activity was inhibited by HgCl2, p-chloromercuribenzoate (p-CMB), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and ethylendiaminotetraacetic acid (EDTA). The half life at 53 degrees C was approximately 100 min.  相似文献   

19.
Partial 16S rDNA from Vibrio collection type strains and recent isolates of Vibrio-related strains were sequenced and compared with previously published sequences. A 24-base DNA oligonucleotide (VaV3) was designed and used as a specific probe for detection and identification of Vibrio anguillarum. Its specificity was tested against collection type strains and environmental isolates and no cross-reaction was found. The probe detected 8 of the 10 V. anguillarum serovars. It was applied to screen different Vibrio-related strains isolated from marine hatcheries and fish farms. The detection limit in DNA-DNA slot blot hybridization was 150 pg.  相似文献   

20.
Salmonella typhimurium but not citrate-utilizing Escherichia coli carrying the Cit plasmid showed positive chemotaxis to tricarboxylic acids, indicating that the Cit plasmid encodes a transport system but not a chemoreceptor for citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号