首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phototransformation of phytochrome in lettuce seeds (Lactuca sativa L. var. Grand Rapids) was examined by testing germination responses of seeds irradiated at various temperatures. Temperature variations from 0 to 50 C had no influence on the germination of partially hydrated seeds (about 15% water content) irradiated with either red or far red light prior to imbibition. At −15 C far red light more effectively retarded germination than red light promoted it. No effective phototransformation was detected at −79 C or −196 C.  相似文献   

2.
Photomanipulation of phytochrome in lettuce seeds   总被引:4,自引:2,他引:2       下载免费PDF全文
Seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) were imbibed and given either short irradiation with red or far red light prior to drying or dried under continuous red or far red light. Seeds treated with either short or continuous red germinate in darkness, whereas seeds treated with either short or continuous far red require a short exposure to red light, after a period of imbibition, to stimulate germination. Irradiation of dry red seeds with far red light immediately before sowing results in a marked inhibition of germination. This result was predicted since far red-absorbing form phytochrome can be photoconverted to the intermediate P650 (absorbance maximum 650 nm) in freeze-dried tissue. A similar far red treatment to continuous red seeds is less effective and it is concluded that in these seeds a proportion of total phytochrome is blocked as intermediates between red-absorbing and far red-absorbing form phytochrome, which only form the far red-absorbing form of phytochrome on imbibition. The inhibition of dry short red seeds by far red light can be reversed by an irradiation with short red light given immediately before sowing, confirming that P650 can be photoconverted back to the far red-absorbing form of phytochrome. The results are discussed in relation to seed maturation (dehydration) on the parent plant.  相似文献   

3.
Sublethal doses of γ-radiation and far red light have some-what analogous, red light reversible, effects on the germination of lettuce seeds (Lactuca sativa L. var. Grand Rapids). However, the mechanism by which γ-radiation retards germination appears to differ from that of far red light. Compared to controls, γ-radiation retarded germination for the first 24 hours; but after 36 or 48 hours of imbibition gemination of treated seeds was higher than that of the controls, whether or not the γ-irradiated seeds received red or far red light. The effects of γ-radiation are more pronounced in seeds containing 15% water at the time of treatment than in those containing only 7% water. The promotive action of red light is operative in the presumed absence of cell division in γ-treated seeds.  相似文献   

4.
At 25 °C germination of tomato (Lycopersicon lycopersicum)seeds is inhibited by continuous and intermittent far red illumination.It is also inhibited by a single 30 min far red irradiationgiven 8 h from the start of imbibition. The incubation of seedsin a mannitol solution inhibitory for germination has no effecton the final germination percentage after seeds are subsequentlytransferred to water. A 30 min far red irradiation at the timeof transfer results in partial inhibition of germination. Thisinhibition can be released by the continuation of osmotic incubationfor several days before the transfer to water. At the end ofa 7 d dark period of osmotic incubation, inhibition of subsequentgermination in water can be realized only by continuous farred illumination. Seeds osmotically pretreated for 7 d and afterwardsdried-back show a mean time to 50% germination significantlylower than that of untreated seeds. Moreover, besides singleand intermittent, even continuous far red light has no inhibitoryeffect on the germination of these seeds. It is concluded that,in addition to the already known germination advantages, osmoticpresowing treatment also induces the ability of seeds to germinateunder unfavourable light conditi.  相似文献   

5.
In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.  相似文献   

6.
Fluence response curves for red light-induced germination of thermodormant (TD) seeds of Lactuca sativa L. show two regions that differ in their light sensitivity. In the region of high sensitivity, the germination responses differ between seed batches and can be altered by dark storage or far red irradiation. Induction of germination in far red dormant (FRD) seeds requires far higher fluences. Action spectra for induction to 60% germination were determined for these various response types. Spectra for the regions of low sensitivity response are similar for TD and FRD seeds. In comparison, the action spectrum for the highly sensitive response in TD seeds is significantly shifted to longer wavelengths. Analogous differences exist in the action spectra for far red reversal of the red induced germination responses. Germination induction in the low sensitivity region shows repeated red-far red reversibility. Far red reversal of red induction in the high sensitivity region does not saturate even at the highest far red fluences available and requires increased red fluences for subsequent reinduction. A model quantitatively accounting for these observations is presented. It is pointed out that action spectra of processes involving photoreversible pigments with partly overlapping absorption spectra in general are not identical with the absorption spectra of the partners. They should depend upon the degree of phototransformation required to elicit a given physiological response. In the case of induction of lettuce seed germination the observed action spectra can be interpreted as reflecting different requirements for P fr of the various response types. Our results do not necessitate the assumption of spectroscopically different forms of phytochrome in these seeds.Abbreviations TD thermodormant - FRD far red dormant - P phytochrome - P r red absorbing form of P - P fr far red absorbing form of P  相似文献   

7.
Dark reversion of the far red-absorbing form of phytochrome, which does not occur in dry lettuce (Lactuca sativa var. Grand Rapids) seeds, appears to take place in seeds stored in a water-saturated atmosphere. The water content (approximately 70% after 10 days) of such seeds is insufficient to support germination; however the treatment enhances germination in seeds stored for 1 to 5 days, but this enhancement subsequently disappears, and the effect of extended storage (up to 28 days) is inhibiting. The half-time for dark far red-absorbing phytochrome reversion is 7 to 8 days, and at this time it can be completely reversed by exposing the seeds to a flash of red light. Storage of more than 7 to 8 days decreases red light enhancement of germination.  相似文献   

8.
Effect of light on seed germination of eight wetland Carex species   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: In wetland plant communities, species-specific responses to pulses of white light and to red : far-red light ratios can vary widely and influence plant emergence from the seed bank. Carex species are the characteristic plants of sedge meadows of natural prairie wetlands in mid-continental USA but are not returning to restored wetlands. Little is known about how light affects seed germination in these species-information which is necessary to predict seed bank emergence and to develop optimal revegetation practices. The effects of light on germination in eight Carex species from prairie wetlands were investigated. METHODS: Non-dormant seeds of eight Carex species were used to determine the influence of light on germination by examining: (a) the ability of Carex seeds to germinate in the dark; (b) the effect of different lengths of exposures to white light on germination; (c) whether the effect of white light can be replaced by red light; and (d) whether the germination response of Carex seeds to white or red light is photoreversible by far-red light. KEY RESULTS: Seeds of C. brevior and C. stipata germinated >25 % in continuous darkness. Germination responses after exposure to different lengths of white light varied widely across the eight species. Carex brevior required <15 min of white light for > or =50 % germination, while C. hystericina, C. comosa, C. granularis and C. vulpinoidea required > or =8 h. The effect of white light was replaced by red light in all species. The induction of germination after exposure to white or red light was reversed by far-red light in all species, except C. stipata. CONCLUSIONS: The species-specific responses to simulated field light conditions suggest that (a) the light requirements for germination contribute to the formation of persistent seed banks in these species and (b) in revegetation efforts, timing seed sowing to plant community development and avoiding cover crops will improve Carex seed germination.  相似文献   

9.
Responses of seed germination to air temperature, water potential, light, and smoke were studied in the laboratory for seeds of the invasive bunch grass Pennisetum ciliare (L.) Link (syn. Cenchrus ciliare L.; buffel grass). First introduced to North America during the mid-twentieth Century for establishing pastures, this African bunch grass has become an invasive species of concern. Across all the experiments conducted, a low germination was observed for P. ciliare fascicles that never exceeded 30 % at 21 days after sowing. Optimal day/night air temperatures for germination, controlled with an environmental chamber, were 25/15 and 30/20 °C, while extreme temperatures of 15/5 and 45/35 °C inhibited germination. By sowing seeds of P. ciliare under different water potentials, created with aqueous solutions of polyethylene glycol, an optimum of ?0.03 MPa led to the highest germination, while no germination was observed at ?1.0 MPa. Monochromatic optical filters were utilized to germinate seeds under various wavelengths, of which red (650 nm) and far red (730 nm) led to the highest germination. In addition, seeds that were incubated in the dark had higher germination than those incubated under white light. Incubation in smoke water, which can stimulate germination of pyrophytic species, resulted in a marginal inhibition of germination compared with imbibition with distilled water.  相似文献   

10.
Germination inhibitors in methanol and water extracts of redbeet fruits (Beta vulgaris cv. rubra L.) have been studied usinglettuce and red beet seed germination as bioassays. The methanolextracts contained substances which inhibited lettuce seed germination,but had no effect on the germination of red beet seeds. Germinationof both lettuce seeds and of water-leached or sulphuric acid-treatedred beet seed balls were inhibited by the water extracts. Theconcentrations of ammonia, ferulic acid, and oxalate in thewater extracts were much lower than required for inhibitionof red beet seed germination. The water extracts contained,however, large amounts of inorganic ions, and the results clearlydemonstrated that the inhibitory effect of the water extractson red beet seed germination was mainly due to the content ofsuch inorganic ions.  相似文献   

11.
Incubation of lettuce seeds (Lactuca sativa L. cv. Grand Rapids) in 0.3 m mannitol allows sufficient water uptake to make seeds fully sensitive to red light. But germination is possible only after lowering the osmotic potential of the incubation medium. The red light induction of these incompletely hydrated seeds can be reversed by far red light. Their reversibility declines with time at a slower rate than seeds incubated in water. About half the seeds in 0.3 m mannitol respond to far red light when all seeds in water have escaped control by far red light. Close to 100% of the seeds remain sensitive to far red exposure if 0.6 m mannitol is used as osmoticum. The retention of the original red light stimulus is inversely related to the concentration of the incubation medium.The fresh weight of viable seeds incubated with water or with an osmoticum increases rapidly during the first 5 hours, then remains stationary for about 12 hours. After that only germinating seeds experience a second increase in fresh weight. Heat-killed seeds do not show such a discontinuity in water uptake.  相似文献   

12.
Taylorson RB 《Plant physiology》1975,55(6):1093-1097
A 10 C dark prechilling of johnsongrass [Sorghum halepense (L.) Pers.] seeds, when terminated by a 2-hr, 40 C temperature shift, potentiates about 40% germination at 20 C in darkness. Irradiation of the seeds before, during, and at the end of prechilling with far red light reduces the subsequent germination, although red irradiation after the far red can overcome some of the inhibition. However, either brief red or far red irradiation given immediately after the temperature shift inhibits subsequent germination by one-third to one-half. The results suggest that the far red-absorbing form of phytochrome is a factor in the prechill-induced dark germination and that phytochrome participates in the inhibition of germination by irradiations immediately after the temperature shift.  相似文献   

13.
Photoblastic seeds (akenes) of lettuce (Lactuca sativa (L.) cv. Grand Rapids) were treated with SAN 9789 [4-chloro-5-(methylamine)-2-a, a, a,-trifluoro-m-tolyl-3-(2H)-pyridasinone]. The seeds weere placed in Petri dishes on filter paper soaked with water or SAN solution. The treatment increased the germination in darkness from 17% for water to 78% for SAN treated seeds. An irradiation with 5 min red light gave a germination of 98% both in water and in SAN. In water the effect of red irradiation could be reversed with a short irradiation (8 min) of far red light (17% germination), while in SAN solution the far red reversibility was poor (92% germination). If the far red light was given repeatedly (5 min per h) it had a slightly larger effect. If given continuously for 24 hours, the germination in water was decreased to 0.3% and in SAN solution to 9%. Possible mechanisms for the SAN effect are discussed.  相似文献   

14.
Summary The germination behaviour of the seeds ofT. crystallina in relation to its frequent distribution in arid and semi-arid belt of Rajasthan has been investigated. In nature, the seed germination in this weed is definitely effected and to some extent controlled by certain features like light, environmental temperature fluctuations, germination temperature and seed age, and their complex effect seems to be responsible for the complex germination behaviour, and also for the common occurrence and distribution of this species in arid and semi-arid areas of low rainfall in Rajasthan and also in the dry habitats of Australia, Arabia and West Pakistan. The seeds possess endogenous seed coat inhibitor which is removed by washing with running water. Germination is also inhibited by total light and dark conditions, but for the diffused light. Constant low (10 °C) and high temperatures (40 °C and above) have also more or less deleterious effect on germination. However, if the seeds are given some intermittent treatment like low temperature (10 °C) or dilute acid (1%) before germination, they show better germination at slightly higher (35 or 40 °C) temperatures (64% and 40.3% respectively). The older seeds show a quick and higher germination percentage (89.6%) while fresh ones show a sufficiently poor percentage (36.3%) when both were germinated under uniform conditions of temperature (35 °C) and germination duration (96 hours). This is due to a slower moisture depletion and higher as well as faster water imbibition capability of old seeds than the fresh ones under identical treatments and conditions. Thus, the older seeds can retain more moisture for long than fresh seeds at all higher temperatures as the old seeds lose moisture slower than the fresh ones (87.2% and 91.6% respectively) when kept for drying under uniform conditions. The increase in water absorption after imbibition is faster in old seeds (48.4%) as compared to fresh ones (24.3%) and that the former which germinate faster, absorb two times more water than the latter when both are put for imbibition under similar conditions of temperature and duration.  相似文献   

15.
Grand Rapids lettuce (Lactuca sativa L.) seeds were given 35 C heat treatments to increase photodormancy in a subsequent 20 C dark period. Short heat treatments (1-5 hours) induced a significant germination percentage increase of from 16% to over 50% depending on seed lot. With longer heat treatments dark germination percentage was gradually reduced to zero. If given at the end of 35 C, far red or red followed by far red further increased the amount of dark germination.  相似文献   

16.
Germination of Seeds in the Shadow of Plants   总被引:6,自引:0,他引:6  
An attempt to prove the ecological significance of red-far red control mechanisms in seed germination was made. The seeds of 30 species were exposed beneath the plant canopies. All the normally light-stimulated seeds, and also seeds of 14 (out of 19) “insensitive’ species and seeds of 1 (out of 4) light-inhibited species, were inhibited or significantly retarded in their germination, as compared with seeds exposed to diffuse light in an artificial construction. Further experiments with “insensitive’ seeds of Lactuca sativa L. cv. Cud Vorburgu showed that after prolonged plant-shadow treatment the seeds became light-sensitive in the usual phytochrome-mediated manner. Seeds exposed under the plant canopies during a few days were extremely sensitive to red or white light, but this sensitivity diminished slowly in the course of treatment. The spectral composition of light filtered through the leaves shows great preponderance of far red radiation. The red-far red reversion can be simply obtained with the natural light and a leaf. In open stands bright weather retards considerably the germination of lettuce, cloudy weather brings about full germination. Some considerations on the ecological significance of seed behaviour, particularly as connected with plant competition, are given.  相似文献   

17.
The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA.  相似文献   

18.
Effects of 2 °C chilling on the threshold moisture contentsand water potentials for various physiological processes wereestimated forAesculus hippocastanumL. seed. Seed harvested atthe time of maximum seed fall exhibited a dual response to drying:partial drying from near 50% to 32–40% moisture contentprogressively increased germination percentage (at 16 °C)up to various peak values; further desiccation was detrimental,confirming that the seeds are ‘recalcitrant’. Themoisture content for optimum germination was increased by atleast 10% as the chilling period was raised from 0 to 9 weeks.A negative linear relationship was found between log10mean timeto germinate and probit final germination, regardless of pre-treatment,indicating that partial desiccation and chilling are interchangeablein promoting germination of hydrated seed. For nearly fullyhydrated seeds, increasing the chilling period from 6 to 26weeks increased the viability-loss onset point for desiccationinjury from near 40% to about 48% moisture content without alteringthe drying rates of seed tissues. Extending moist chilling invarious seed lots from 0 to 26 weeks decreased subsequent longevityat 16 °C. For 26-week-chilled seeds longevity (the periodto lose one probit of germination) differed above and belowa threshold moisture content of 48%. It remained constant inthe moisture-content range 48–38%, but increased progressivelyas moisture content was raised above 48%. This threshold moisturecontent coincided with the value above which chilled seed pre-germinatedin storage. The results indicate that post-harvest desiccationand chilling alter the water relations of various physiologicalprocesses and a schematic summary is presented which relatesthe results to an axis water sorption isotherm.Copyright 1998Annals of Botany Company Aesculus hippocastanumL., horse chestnut, chilling, moisture content, water potential, desiccation tolerance, longevity, recalcitrant seed, embryo axis, maturation, germination.  相似文献   

19.
Ten-30 d imbibed skotodormant lettuce seeds (Lactuca sativaL. cv. Grand Rapids) showed no germination with water alone.However, following a single treatment of red light (R), gibberellinA3 (GA3) or 1 h acid immersion (pH 0–1) plus water rinse,7% germinated. These imbibed skotodormant seeds germinated 85%or higher if acid immersion was carried out before R or GA3.Similar values were obtained with imbibed skotodormant seedsunder acid immersion plus drying treatment applied at day 10or 20 plus R or GA3 treatment applied 10 d later. One or twodrying treatments alone reduced the degree of skotodormancyand made seeds more responsive to R but not GA3. Seeds withone R plus drying treatment at day 10 or 20 germinated about50% with or without an additional R, and 80% or more with GA3on day 20 or 30. The 20 or 30 d skotodormant seeds having R(with or without drying) or acid plus R and drying treatmenton day 10 or 20 and additional dark incubation in water for10d showed 85 to 100% germination with only acid immersion.The skotodormancy was eliminated by the acid immersion but itwas initiated again if R or GA3 treatment was not given immediately.It is concluded that the drying treatment, after eliminationof skotodormancy by acid or acid + R pretreatment, preventsthese seeds re-entering skotodormancy and maintains a high germinationpotential under dark storage for up to 20 d. Key words: Dark reversion of phytochrome, gibberellin A3, acidification, skotodormancy, induction and breakage of seed dormancy  相似文献   

20.
Promotion of germination by red light fails after prolonged dark imbibition of Rumex crispus L. seeds, indicative of a secondary dormancy. The degree and rate of inception of the dormancy increases with increasing temperature. Following establishment of the dormancy, germination response to red light can be restored by either prolonged cold treatment or brief high temperature shifts. Loss of phytochrome was not a factor in the initial establishment of the dormancy. When the seeds are in secondary dormancy, the chromophore of phytochrome can be transformed to the far red-absorbing form, but the far red-absorbing form cannot induce germination. The responses to changes in temperature suggested dependence of germination on order disorder transitions in components of the seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号