首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   

2.
We describe a generic protocol for the overproduction and purification of recombinant proteins in Escherichia coli. The strategy utilizes a dual His6-maltose binding protein (HisMBP) affinity tag that can be removed from the target protein by digestion of the fusion protein at a designed site by tobacco etch virus protease. The MBP moiety serves to enhance the solubility and promote the proper folding of its fusion partners, and the polyhistidine tag facilitates its purification to homogeneity. This protocol is divided into three stages, each of which takes approximately 1 week to complete: (i) construction of a HisMBP fusion vector; (ii) a pilot experiment to assess the yield and solubility of the target protein; and (iii) the large-scale production and purification of the target protein.  相似文献   

3.
Expression of recombinant proteins as fusions with SUMO (small ubiquitin-related modifier) protein has significantly increased the yield of difficult-to-express proteins in Escherichia coli. The benefit of this technique is further enhanced by the availability of naturally occurring SUMO proteases, which remove SUMO from the fusion protein. Here we have improved the exiting SUMO fusion protein approach for effective production of native proteins. First, a sticky-end PCR strategy was applied to design a new SUMO fusion protein vector that allows directional cloning of any target gene using two universal cloning sites (Sfo1 at the 5'-end and XhoI at the 3'-end). No restriction digestion is required for the target gene PCR product, even the insert target gene contains a SfoI or XhoI restriction site. This vector produces a fusion protein (denoted as His(6)-Smt3-X) in which the protein of interest (X) is fused to a hexahistidine (His(6))-tagged Smt3. Smt3 is the yeast SUMO protein. His(6)-Smt3-X was purified by Ni(2+) resin. Removal of His(6)-Smt3 was performed on the Ni(2+) resin by an engineered SUMO protease, His(6)-Ulp1(403-621)-His(6). Because of its dual His(6) tags, His(6)-Ulp1(403-621)-His(6) exhibits a high affinity for Ni(2) resin and associates with Ni(2+) resin after cleavage reaction. One can carry out both fusion protein purification and SUMO protease cleavage using one Ni(2+)-resin column. The eluant contains only the native target protein. Such a one-column protocol is useful in developing a better high-throughput platform. Finally, this new system was shown to be effective for cloning, expression, and rapid purification of several difficult-to-produce authentic proteins.  相似文献   

4.
Recombinant proteins are commonly expressed in fusion with an affinity tag to facilitate purification. We have in the present study evaluated the possible use of the human glutaredoxin 2 (Grx2) as an affinity tag for purification of heterologous proteins. Grx2 is a glutathione binding protein and we have shown in the present study that the protein can be purified from crude bacterial extracts by a one-step affinity chromatography on glutathione-Sepharose. We further showed that short peptides could be fused to either the N- or C-terminus of Grx2 without affecting its ability to bind to the glutathione column. However, when Grx2 was fused to either the 27 kDa green fluorescent protein or the 116 kDa beta-galactosidase, the fusion proteins lost their ability to bind glutathione-Sepharose. Insertion of linker sequences between the Grx2 and the fusion protein did not restore binding to the column. In summary, our findings suggest that Grx2 may be used as an affinity tag for purification of short peptides and possibly also certain proteins that do not interfere with the binding to glutathione-Sepharose. However, the failure of purifying either green fluorescent protein or beta-galactosidase fused to Grx2 suggests that the use of Grx2 as an affinity tag for recombinant protein purification is limited.  相似文献   

5.
Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.  相似文献   

6.
Expressing proteins with fusion partners improves yield and simplifies the purification process. We developed a novel fusion partner to improve the secretion of heterologous proteins that are otherwise poorly excreted in yeast. The VOA1 (YGR106C) gene of Saccharomyces cerevisiae encodes a subunit of vacuolar ATPase. We found that C-terminally truncated Voa1p was highly secreted into the culture medium, even when fused with rarely secreted heterologous proteins such as human interleukin-2 (hIL-2). Deletion mapping of C-terminally truncated Voa1p, identified a hydrophilic 28-amino acid peptide (HL peptide) that was responsible for the enhanced secretion of target protein. A purification tag and a protease cleavage site were added to use HL peptide as a multi-purpose fusion partner. The utility of this system was tested via the expression and purification of various heterologous proteins. In many cases, the yield of target proteins fused with the peptide was significantly increased, and fusion proteins could be directly purified with affinity chromatography. The fusion partner was removed by in vitro processing, and intact proteins were purified by re-application of samples to affinity chromatography.  相似文献   

7.
N- or C-terminal fusions of red-fluorescent protein (RFP) with various fungal cellulose-binding domains (CBDs) belonging to carbohydrate binding module (CBM) family 1 were expressed in a Pichia pastoris expression system, and the resulting fusion proteins were used to examine the feasibility of large-scale affinity purification of CBD-tagged proteins on cellulose columns. We found that RFP fused with CBD from Trichoderma reesei CBHI (CBD(Tr)(CBHI)) was expressed at up to 1.2g/l in the culture filtrate, which could be directly injected into the cellulose column. The fusion protein was tightly adsorbed on the cellulose column in the presence of a sufficient amount of ammonium sulfate and was efficiently eluted with pure water. Bovine serum albumin (BSA) was not captured under these conditions, whereas both BSA and the fusion protein were adsorbed on a phenyl column, indicating that the cellulose column can be used for the purification of not only hydrophilic proteins but also for hydrophobic proteins. Recovery of various fusion proteins exceeded 80%. Our results indicate that protein purification by expression of a target protein as a fusion with a fungal family 1 CBD tag in a yeast expression system, followed by affinity purification on a cellulose column, is simple, effective and easily scalable.  相似文献   

8.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

9.
For affinity-chromatography-based purification of proteins that are prone to abnormal termination of translation or that may not be modified at their N-termini, affinity tags are needed which can be fused to the C-terminus. In this publication we describe that maltose binding protein (MBP) fused to the C-terminus of the plant photoreceptor phytochrome B allows purification of the fusion protein via amylose affinity chromatography. After overexpression in yeast a 125-fold enrichment could be achieved. The spectral properties of phytochrome B were not impaired by the fusion and purification. These results demonstrate that not only the widely used N-terminal fusions of MBP but also C-terminal fusions can be employed for protein purification.  相似文献   

10.
Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with an N-terminal Histag. It was found that most of the small membrane proteins were overexpressed in the native membrane of Escherichia coli when using mMBP. In addition, the proteolysis of the fusions were performed on the membrane without solubilization with detergents, leading to the development of an efficient protocol to directly purify the target membrane proteins from the membrane fraction through a one-step affinity chromatography. Our results indicated that mMBP is an excellent fusion partner for overexpression, membrane targeting and purification of small membrane proteins. The present expression and purification method may be a good solution for the large scale preparation of small membrane proteins in structural and functional studies.  相似文献   

11.
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.  相似文献   

12.
Recombinant protein purification using IMAC is often carried out by protein fusion to affinity tags. We have identified several tags useful for protein purification on Zn(II)-IDA columns. These tags were fused to the green fluorescent protein (rGFPuv) using the vector pGFPuv distributed by Clontech Lab (Palo Alto, CA) and analyzed for purification on Zn(II)-IDA. Each fusion protein exhibited elution heterogeneity (elution in two distinct pHs) from Zn(II)-IDA columns This led us to believe that two populations of fluorescent proteins were being expressed: one without the tag coeluting with Escherichia coli proteins at pH 7.5 and one bearing the tag eluting at a pH lower than pH 7.5. Assessment of the constructs revealed the possibility of a ribosomal binding site and start codon between the fusion tag and the rGFPuv sequence which might be used as a secondary translation start site. This hypothesis was confirmed by changing the second ATG (methionine) codon to an ACG (threonine) codon. The protein produced from this new construct eluted in a single fraction from a Zn(II)-IDA column. Thus, vector irregularities (along with other possibilities) should be examined when searching for the cause of elution heterogeneity of a target protein.  相似文献   

13.
In response to the rapidly growing field of proteomics, the use of recombinant proteins has increased greatly in recent years. Recombinant hybrids containing a polypeptide fusion partner, termed affinity tag, to facilitate the purification of the target polypeptides are widely used. Many different proteins, domains, or peptides can be fused with the target protein. The advantages of using fusion proteins to facilitate purification and detection of recombinant proteins are well-recognized. Nevertheless, it is difficult to choose the right purification system for a specific protein of interest. This review gives an overview of the most frequently used and interesting systems: Arg-tag, calmodulin-binding peptide, cellulose-binding domain, DsbA, c-myc-tag, glutathione S-transferase, FLAG-tag, HAT-tag, His-tag, maltose-binding protein, NusA, S-tag, SBP-tag, Strep-tag, and thioredoxin.  相似文献   

14.
Expression and affinity purification of recombinant proteins from plants   总被引:1,自引:0,他引:1  
With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system.  相似文献   

15.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

16.
Kwon SY  Choi YJ  Kang TH  Lee KH  Cha SS  Kim GH  Lee HS  Kim KT  Kim KJ 《Plasmid》2005,53(3):274-282
Recently developed bacterial hemoglobin (VHb) fusion expression vector has been widely used for the production of many target proteins due to its distinctive properties of expressing fusion protein with red color which facilitates visualization of the steps in purification, and increasing solubility of the target proteins. However, after intensive use of the vector, several defects have been found. In this report, we present a modified VHb fusion vector (pPosKJ) with higher efficiency, in which most of the defects were eliminated. First, it was found that thrombin protease often digests target protein as well as inserted thrombin cleavage site, so it was replaced by a TEV cleavage site for more specific cleavage of VHb from target protein. Second, a glycine-rich linker sequence was inserted between 6x his-tag and VHb to improve the affinity of 6x his-tag to Ni-NTA resin, resulting in higher purity of eluted fusion protein. Third, EcoRI and XhoI restriction sites located elsewhere in the vector were removed to make these restriction sites available for the cloning of target protein coding genes. A pPosKJ vector was fully examined with an anti-apoptotic BCL-2 family member of Caenorhabditis elegans, CED-9. A C-terminal VHb fusion expression vector (pPosKJC) was also constructed for stable expression of target proteins that may be difficult to express with an N-terminal fusion. Vaccinia-related kinase 1 (VRK1) was also successfully expressed and purified using the vector with high yield. Taken together, we suggest that the VHb fusion vector may be well suited for high-throughput protein expression and purification.  相似文献   

17.
The new bacterial vector pETM60 enables the expression of His-tagged recombinant proteins fused to the C-terminus of NusA through a TEV protease recognition sequence. Three sequences coding for two protein domains (Xklp3A and Tep3Ag) and one membrane-bound viral protein (E8R) could not be expressed in a soluble form in bacteria. Their GST-fusions were mostly soluble but quickly degraded during purification. The same sequences cloned in pETM60 were efficiently purified by metal affinity and recovered soluble after the removal of the fusion partner. The NusA-fused constructs enabled to yield 13-20mg of fusion protein per litre of culture and 2.5-5mg of pure protein per litre of culture. Structural analysis indicated that the purified proteins were monodispersed and correctly folded. NusA has been used to raise antibodies that have been successfully used for Western blot and immunoprecipitation of NusA fusion proteins.  相似文献   

18.
The production of candidate affinity proteins in a soluble form, for downstream characterization, is often a time-consuming step in combinatorial protein engineering methods. Here, a novel approach for efficient production of candidate clones is described based on direct cleavage of the affinity protein from the surface of Staphylococcus carnosus, followed by affinity purification. To find a suitable strategy, three new fusion protein constructs were created, introducing a protease site for specific cleavage and purification tags for affinity chromatography purifications into the staphylococcal display vector. The three modified strains were evaluated in terms of transformation frequency, surface expression level and protease cleavage efficiency. A protocol for efficient affinity purification of protease-released affinity proteins using the introduced fusion-tags was successfully used, and the functionality of protease-treated and purified proteins was verified in a biosensor assay. To evaluate the devised method, a previously selected HER2-specific affibody was produced applying the new principle and was used to analyze HER2 expression on human breast cancer cells.  相似文献   

19.
In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain-intein tag for purification via a chitin-agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and β-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the ΔI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.  相似文献   

20.
We have studied the effect of solubilising N-terminal fusion proteins on the yield of target protein after removal of the fusion partner and subsequent purification using immobilised metal ion affinity chromatography. We compared the yield of 45 human proteins produced from four different expression vectors: three having an N-terminal solubilising fusion protein (the GB1-domain, thioredoxin, or glutathione S-transferase) followed by a protease cleavage site and a His tag, and one vector having only an N-terminal His tag. We have previously observed a positive effect on solubility for proteins produced as fusion proteins compared to proteins produced with only a His tag in Escherichia coli. We find this effect to be less pronounced when we compare the yields of purified target protein after removal of the solubilising fusion although large target-dependent variations are seen. On average, the GB1+His fusion gives significantly higher final yields of protein than the thioredoxin+His fusion or the His tag, whereas GST+His gives lower yields. We also note a strong correlation between solubility and target protein size, and a correlation between solubility and the presence of peptide fragments that are predicted to be natively disordered.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号