首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen L  Wang Z  Ghosh-Roy A  Hubert T  Yan D  O'Rourke S  Bowerman B  Wu Z  Jin Y  Chisholm AD 《Neuron》2011,71(6):1043-1057
The mechanisms underlying the ability of axons to regrow after injury remain poorly explored at the molecular genetic level. We used a laser injury model in Caenorhabditis elegans mechanosensory neurons to screen 654 conserved genes for regulators of axonal regrowth. We uncover several functional clusters of genes that promote or repress regrowth, including genes classically known to affect axon guidance, membrane excitability, neurotransmission, and synaptic vesicle endocytosis. The conserved Arf Guanine nucleotide Exchange Factor (GEF), EFA-6, acts as an intrinsic inhibitor of regrowth. By combining genetics and in?vivo imaging, we show that EFA-6 inhibits regrowth via microtubule dynamics, independent of its Arf GEF activity. Among newly identified regrowth inhibitors, only loss of function in EFA-6 partially bypasses the requirement for DLK-1 kinase. Identification of these pathways significantly expands our understanding of the genetic basis of axonal injury responses and repair.  相似文献   

2.
Microtubules in interphase mammalian cells usually form a radial array with minus-ends concentrated in the central region and plus-ends placed at the periphery. This is accepted as correct, that two factors determinate the radial organization of microtubules - the centrosome, which nucleate and anchor the microtubules minus-ends, and the interaction of microtubules with cortical dynein, which positions centrosome in the cell center. However, it looks as if there are additional factors, affecting the radial structure of microtubule system. We show here that in aged Vero cytoplasts (17 h after enucleation) microtubule system lost radial organization and became chaotic. To clear up the reasons of that, we studied centrosome activity, its position in the cytoplasts and microtubule dynamics. We found that centrosome in aged cytoplasts was still active and placed in the central region of the cytoplasm, while after total disruption of the microtubules it was displaced from the center. Microtubules in aged cytoplasts were not stabilized, but they lost their ability to stop to grow near cell cortex and continued to grow reaching it. Aged cytoplast lamellae was partially depleted with dynactin though Golgi remained compact indicating dynein activity. We conclude that microtubule stoppage at cell cortex is mediated by some (protein) factors, and these factors influence radial structure of microtubule system. It seems that the key role in centrosome positioning is played by dynein complexes anchored everywhere in the cytoplasm rather than anchored in cell cortex.  相似文献   

3.
Adenovirus translocation to the nucleus occurs through a well characterized minus end-directed transport along microtubules. Here, we show that the adenovirus infection process has a significant impact on the stability and dynamic behavior of host cell microtubules. Adenovirus-infected cells had elevated levels of acetylated and detyrosinated microtubules compared with uninfected cells. The accumulation of modified microtubules within adenovirus-infected cells required active RhoA. Adenovirus-induced changes in microtubule dynamics were characterized at the centrosome and at the cell periphery in living cells. Adenovirus infection resulted in a transient enhancement of centrosomal microtubule nucleation frequency. At the periphery of adenovirus-infected cells, the dynamic instability of microtubules plus ends shifted toward net growth, compared with the nearly balanced growth and shortening observed in uninfected cells. In infected cells, microtubules spent more time in growth, less time in shortening, and underwent catastrophes less frequently compared with those in uninfected cells. Drug-induced inhibition of Rac1 prevented most of these virus-induced shifts in microtubule dynamic instability. These results demonstrate that adenovirus infection induces a significant stabilizing effect on host cell microtubule dynamics, which involve, but are not limited to, the activation of the RhoGTPases RhoA and Rac1.  相似文献   

4.
Regulation of microtubule growth is critical for many cellular processes, including meiosis, mitosis, and nuclear migration. We carried out a genome-wide RNAi screen in Caenorhabditis elegans to identify genes required for pronuclear migration, one of the first events in embryogenesis requiring microtubules. Among these, we identified and characterized tac-1 a new member of the TACC (Transforming Acidic Coiled-Coil) family [1]. tac-1(RNAi) embryos exhibit very short microtubules nucleated from the centrosomes as well as short spindles. TAC-1 is initially enriched at the meiotic spindle poles and is later recruited to the sperm centrosome. TAC-1 localization at the centrosomes is regulated during the cell cycle, with high levels during mitosis and a reduction during interphase, and is dependent on aurora kinase 1 (AIR-1), a protein involved in centrosome maturation. tac-1(RNAi) embryos resemble mutants of zyg-9, which encodes a previously characterized centrosomal protein of the XMAP215 family and was also found in our screen. We show that TAC-1 and ZYG-9 are dependent on one another for their localization at the centrosome, and this dependence suggests that they may function together as a complex. We conclude that TAC-1 is a major regulator of microtubule length in the C. elegans embryo.  相似文献   

5.
6.
Tandem affinity purification (TAP) is a method originally established in yeast to isolate highly purified protein complexes in a very gentle and efficient way. In this work, we have modified TAP for Dictyostelium applications and have proved it as a useful method to specifically isolate and identify microtubule-associated protein (MAP) complexes. MAPs are known to interact with other proteins to fulfill their complex functions in balancing the dynamic instability of microtubules as well as anchoring microtubules at the cell cortex, controlling mitosis at the centrosome and guiding transport along them. DdEB1 and the Dictyostelium member of the XMAP215 protein family, DdCP224, are known to be part of complexes at the microtubule tips as well as at the centrosome. Employing TAP and mass spectrometry we were able to prove an interaction between EB1 and the DdCP224. Additionally, among other interactions that remain to be confirmed by other methods, an interaction between DdCP224 and a TACC-family protein could be shown for the first time in Dictyostelium and was confirmed by colocalization and co-immunoprecipitation analyses.  相似文献   

7.
gamma-Tubulin is a ubiquitous and highly conserved component of centrosomes in eukaryotic cells. Genetic and biochemical studies have demonstrated that gamma-tubulin functions as part of a complex to nucleate microtubule polymerization from centrosomes. We show that, as in other organisms, Caenorhabditis elegans gamma-tubulin is concentrated in centrosomes. To study centrosome dynamics in embryos, we generated transgenic worms that express GFP::gamma-tubulin or GFP::beta-tubulin in the maternal germ line and early embryos. Multiphoton microscopy of embryos produced by these worms revealed the time course of daughter centrosome appearance and growth and the differential behavior of centrosomes destined for germ line and somatic blastomeres. To study the role of gamma-tubulin in nucleation and organization of spindle microtubules, we used RNA interference (RNAi) to deplete C. elegans embryos of gamma-tubulin. gamma-Tubulin (RNAi) embryos failed in chromosome segregation, but surprisingly, they contained extensive microtubule arrays. Moderately affected embryos contained bipolar spindles with dense and long astral microtubule arrays but with poorly organized kinetochore and interpolar microtubules. Severely affected embryos contained collapsed spindles with numerous long astral microtubules. Our results suggest that gamma-tubulin is not absolutely required for microtubule nucleation in C. elegans but is required for the normal organization and function of kinetochore and interpolar microtubules.  相似文献   

8.
BACKGROUND: The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS: We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS: These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.  相似文献   

9.
Cytoplasmic dynein is a microtubule-based motor protein responsible for vesicle movement and spindle orientation in eukaryotic cells. We show here that dynein also supports microtubule architecture and determines centrosome position in interphase cells. Overexpression of the motor domain in Dictyostelium leads to a collapse of the interphase microtubule array, forming loose bundles that often enwrap the nucleus. Using green fluorescent protein (GFP)-alpha-tubulin to visualize microtubules in live cells, we show that the collapsed arrays remain associated with centrosomes and are highly motile, often circulating along the inner surface of the cell cortex. This is strikingly different from wild-type cells where centrosome movement is constrained by a balance of tension on the microtubule array. Centrosome motility involves force-generating microtubule interactions at the cortex, with the rate and direction consistent with a dynein-mediated mechanism. Mapping the overexpression effect to a C-terminal region of the heavy chain highlights a functional domain within the massive sequence important for regulating motor activity.  相似文献   

10.
中心体作为主要微管组织中心在细胞周期事件中起着重要的作用。异常中心体可产生纺锤体异常,使染色体错误分离,引起染色体不稳定性和非整倍体的形成。中心体异常同染色体不稳定性一样是肿瘤细胞的一个普遍特征,并且可出现在肿瘤发生的早期阶段。中心体异常在肿瘤的发生发展演化过程中可能具有重要作用。现综述中心体的结构、功能、复制和调控,阐述肿瘤中中心体异常的表现和导致中心体扩增的可能机制及中心体扩增与染色体不稳定之间的相关性。  相似文献   

11.
Microtubules undergo alternating periods of growth and shortening, known as dynamic instability. These dynamics allow microtubule plus ends to explore cellular space. The "search and capture" model posits that selective anchoring of microtubule plus ends at the cell cortex may contribute to cell polarization, spindle orientation, or targeted trafficking to specific cellular domains. Whereas cytoplasmic dynein is primarily known as a minus-end-directed microtubule motor for organelle transport, cortically localized dynein has been shown to capture and tether microtubules at the cell periphery in both dividing and interphase cells. To explore the mechanism involved, we developed a minimal in vitro system, with dynein-bound beads positioned near microtubule plus ends using an optical trap. Dynein induced a significant reduction in the lateral diffusion of microtubule ends, distinct from the effects of other microtubule-associated proteins such as kinesin-1 and EB1. In assays with dynamic microtubules, dynein delayed barrier-induced catastrophe of microtubules. This effect was ATP dependent, indicating that dynein motor activity was required. Computational modeling suggests that dynein delays catastrophe by exerting tension on individual protofilaments, leading to microtubule stabilization. Thus, dynein-mediated capture and tethering of microtubules at the cortex can lead to enhanced stability of dynamic plus ends.  相似文献   

12.
BACKGROUND: The centrosome is composed of a centriole pair and pericentriolar material (PCM). By marking the site of PCM assembly, the centrioles define the number of centrosomes present in the cell. The PCM, in turn, is responsible for the microtubule (MT) nucleation activity of centrosomes. Therefore, in order to assemble a functional bipolar mitotic spindle, a cell needs to control both centriole duplication and PCM recruitment. To date, however, the molecular mechanisms that govern these two processes still remain poorly understood. RESULTS: Here we show that SPD-2 is a novel component of the C. elegans centrosome. SPD-2 localizes to the centriole throughout the cell cycle and accumulates on the PCM during mitosis. We show that SPD-2 requires SPD-5 for its accumulation on the PCM and that in the absence of SPD-2, centrosome assembly fails. We further show that centriole duplication is also defective in spd-2(RNAi) embryos, but not in spd-5(RNAi) embryos, where PCM recruitment is efficiently blocked. CONCLUSIONS: Taken together, our results suggest that SPD-2 may link PCM recruitment and centriole duplication in C. elegans. SPD-2 shares homology with a human centrosome protein, suggesting that this key component of the C. elegans centrosome is evolutionarily conserved.  相似文献   

13.
14.
Primordial germ cells (PGCs) are the precursors to the adult germline stem cells that are set aside early during embryogenesis and specified through the inheritance of the germ plasm, which contains the mRNAs and proteins that function as the germline fate determinants. In Drosophila melanogaster, formation of the PGCs requires the microtubule and actin cytoskeletal networks to actively segregate the germ plasm from the soma and physically construct the pole buds (PBs) that protrude from the posterior cortex. Of emerging importance is the central role of centrosomes in the coordination of microtubule dynamics and actin organization to promote PGC development. We previously identified a requirement for the centrosome protein Centrosomin (Cnn) in PGC formation. Cnn interacts directly with Pericentrin‐like protein (PLP) to form a centrosome scaffold structure required for pericentriolar material recruitment and organization. In this study, we identify a role for PLP at several discrete steps during PGC development. We find PLP functions in segregating the germ plasm from the soma by regulating microtubule organization and centrosome separation. These activities further contribute to promoting PB protrusion and facilitating the distribution of germ plasm in proliferating PGCs.  相似文献   

15.
Tandem affinity purification (TAP) is a method originally established in yeast to isolate highly purified protein complexes in a very gentle and efficient way. In this work, we have modified TAP for Dictyostelium applications and have proved it as a useful method to specifically isolate and identify microtubule-associated protein (MAP) complexes. MAPs are known to interact with other proteins to fulfill their complex functions in balancing the dynamic instability of microtubules as well as anchoring microtubules at the cell cortex, controlling mitosis at the centrosome and guiding transport along them. DdEB1 and the Dictyostelium member of the XMAP215 protein family, DdCP224, are known to be part of complexes at the microtubule tips as well as at the centrosome. Employing TAP and mass spectrometry we were able to prove an interaction between EB1 and the DdCP224. Additionally, among other interactions that remain to be confirmed by other methods, an interaction between DdCP224 and a TACC-family protein could be shown for the first time in Dictyostelium and was confirmed by colocalization and co-immunoprecipitation analyses.  相似文献   

16.
Chromosome instability, a major property of cancer cells, is believed to promote mutations that establish malignant phenotypes. Centrosome hyperamplification and the consequential increase in the frequency of aberrant mitoses are the major causes of chromosome instability in cancer cells that lack the functional p53 tumor suppressor protein. Here, we examined dynamic changes of chromosome and centrosome behaviors during long-term culturing of primary epithelial cells derived from p53-null mice. The heterogeneity in the number of chromosomes per cell in the early to mid passage cell population diminished in late passage cells, giving rise to distinct subpopulations of cells. Concomitantly, centrosome hyperamplification that was observed at a high frequency in early to mid passage cells was suppressed in late passage cells. These results provide an explanation for the frequent observations that some cancer cell lines and tissues that lack functional p53 show normal centrosome behaviors and altered, yet relatively stable, chromosomes. Moreover, our in vitro findings may provide a model for possible genomic convergence in cultured cells. This may be analogous to the genomic convergence model proposed for in vivo tumor progression in which chromosome instability initially imposed during tumorigenesis becomes suppressed when neoplastic cells have acquired chromosome compositions that promise an optimal growth in a given environment.  相似文献   

17.
Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis.  相似文献   

18.
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD–EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.  相似文献   

19.
20.
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号