首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.  相似文献   

3.
4.
The regulatory mechanisms governing the cell cycle progression of hematopoietic stem cells (HSCs) are well characterized, but those responsible for the return of proliferating HSCs to a quiescent state remain largely unknown. Here, we present evidence that CD81, a tetraspanin molecule acutely responsive to proliferative stress, is essential for the maintenance of long-term repopulating HSCs. Cd81(-/-) HSCs showed a marked engraftment defect when transplanted into secondary recipient mice and a significantly delayed return to quiescence when stimulated to proliferate with 5-fluorouracil (5FU). In addition, we found that CD81 proteins form a polarized patch when HSCs are returning to quiescence. Thus, we propose that the spatial distribution of CD81 during the HSC recovery phase drives proliferative HSC to quiescence, and is important to preserve the self-renewal properties. Here, we show that lack of CD81 leads to loss of HSC self-renewal, and the clustering of CD81 on HSC membrane results in deactivation of Akt, which subsequently leads to nuclear translocation of FoxO1a. Thus, CD81 functions as part of a previously undefined mechanism that prohibits excessive proliferation of HSCs exposed to environmental stress.  相似文献   

5.
6.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

7.
Haematopoietic stem cells (HSCs) are capable of shifting from a state of relative quiescence under homeostatic conditions to rapid proliferation under conditions of stress. The mechanisms that regulate the relative quiescence of stem cells and its association with self-renewal are unclear, as is the contribution of molecular regulators of the cell cycle to these decisions. Understanding the mechanisms that govern these transitions will provide important insights into cell-cycle regulation of HSCs and possible therapeutic approaches to expand HSCs. We have investigated the role of two negative regulators of the cell cycle, p27(Kip1) and MAD1, in controlling this transition. Here we show that Mad1(-/-)p27(Kip1-/-) bone marrow has a 5.7-fold increase in the frequency of stem cells, and surprisingly, an expanded pool of quiescent HSCs. However, Mad1(-/-)p27(Kip1-/-) stem cells exhibit an enhanced proliferative response under conditions of stress, such as cytokine stimulation in vitro and regeneration of the haematopoietic system after ablation in vivo. Together these data demonstrate that the MYC-antagonist MAD1 and cyclin-dependent kinase inhibitor p27(Kip1) cooperate to regulate the self-renewal and differentiation of HSCs in a context-dependent manner.  相似文献   

8.
The quiescent state is thought to be an indispensable property for themaintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with theirparticular microenvironments, known as the stem cell niches, is critical for cell cycleregulation of HSCs. Monitoring of the quiescence of HSCs using by a new stem cellmarker, Side Population (SP), revealed that the cell cycle status of HSCs is dynamicallycontrolled by the microenvironments. We have recently revealed a molecularmechanism in which cell cycle of HSCs is regulated by the niche. HSCs expressing thereceptor tyrosine kinase Tie2 are adhere to osteoblasts (OBs) in the BM niche. Theinteraction of Tie2 and its ligand Angiopoietin-1 (Ang-1) leads to tight adhesion ofHSCs to stromal cells, resulting in maintainance of long-term repopulating activity ofHSCs. Thus, Tie2/Ang-1 signaling pathway plays a critical role in the maintenance ofHSCs in a quiescent state in the BM niche. The understanding of cell cycle control instem cells leads to development of new strategy for progress in regenerative medicine.  相似文献   

9.
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells.  相似文献   

10.
11.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

12.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

13.
14.
15.
造血干细胞(hematopoietic stem cells,HSCs)是典型的成体干细胞,造血系统的稳定依靠造血干细胞正确的自我更新、增殖和分化。TGF-β超家族包括TGF-β、骨生成蛋白(BMP)和激活素,可通过Smad蛋白对造血干细胞进行调节。TGF-β/Smad通路可通过降低CDK4的表达、增加p21蛋白表达和改变p27分布,将造血干细胞阻断于G1期;通过上调CD34表达,抑制造血干细胞的分化。但也有不同的观点,认为TGF-β对HSCs的调节与Smads无关,TGF-β并非通过调控p21和p27抑制HSCs的增殖,TGF-β/Smad通路对维持HSCs静止状态无关。  相似文献   

16.
Blood-forming hematopoietic stem cells (HSCs) ensure production of all mature blood cells during homeostatic and regenerative hematopoiesis. Proliferation, cell cycle regulation, and quiescence are key processes involved in this function, and in a recent issue of Cancer Cell, show that HSC quiescence is actively regulated by specific molecular mechanisms that appear to distinguish normal HSC maintenance from HSC responses to hematologic injury.  相似文献   

17.
Tesio M  Trumpp A 《Cell Stem Cell》2011,9(3):187-192
The cell cycle regulators involved in maintaining the quiescence, and thereby the self-renewal capacity, of somatic stem cells have long been elusive. Two new Cell Stem Cell articles in this issue (Matsumoto et?al., 2011; Zou et?al., 2011) now show that the CDK inhibitor p57 is a crucial brake for cycling HSCs, and links self-renewal activity to cell cycle quiescence.  相似文献   

18.
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.  相似文献   

19.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

20.
A novel approach is used to study the proliferating behaviour of primitive haematopoietic cell populations in response to different stimuli. A mathematical model based on the average proportion of apoptotic, dividing and quiescent cells in primitive haematopoietic cell populations is developed to describe the mitotic history of 5- (and 6-) carboxyfluorescein diacetate succinimidyl ester-labelled cells. The cell cycle distributions in different cytokine-supplemented cultures of primitive human and mouse bone marrow cells are determined and compared with those found in vivo. The results indicate that a combination of flt-3 ligand, Steel factor and interleukin-11 or hyper-interleukin-6 provide a level of mitogenic stimulation similar to that existing in vivo after a myeloablative radiation dose. The comparison of the cell cycle distribution obtained for different cultures of human bone marrow CD34(+)(45RA/71)(-) cells demonstrates that the addition of flt-3 ligand in these cultures decreases apoptosis significantly but does not reduce quiescence. In addition, in vivo and in vitro, it was found that more than 3 days of stimulation are required to recruit a maximum number of quiescent cells into active cell cycle. These kinetics of cell cycle activation are found to be similar to those identified for the haematopoietic stem cells compartment in the same cultures. This mathematical analysis provides a useful tool for the development of haematopoietic stem cell culture processes for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号