首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that intrahepatic adenosine is involved in activation of the hepatorenal reflex that regulates renal sodium and water excretion. The present study aims to determine which subtype of adenosine receptors is implicated in the process. Mean arterial pressure, portal venous pressure and flow, and renal arterial flow were monitored in pentobarbital anesthetized rats. Urine was collected from the bladder. Intraportal administration of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, increased urine flow by 24%, 89%, and 143% at the dose of 0.01, 0.03, and 0.1 mg x kg(-1), respectively; in contrast, DPCPX, when administered intravenously at the same doses, only increased urine flow by 0%, 18%, and 36%. The increases in urine flow induced by intraportal administration of DPCPX were abolished in rats with liver denervation. Intrahepatic infusion of adenosine significantly decreased urine flow and this response was abolished by intraportal administration of DPCPX. Neither intraportal nor intravenous administration of 3,7-dimethyl-1-propargylxanthine, a selective adenosine A2 receptor antagonist, showed significant influence on urine flow. Systemic arterial pressure, renal blood flow and glomerular filtration rate were unaltered by the administration of any of the drugs. In conclusion, intrahepatic adenosine A1 receptors are responsible for the adenosine-mediated hepatorenal reflex that regulates renal water and sodium excretion.  相似文献   

2.
The function of innervated and denervated kidney was compared in clearance studies with conscious dogs. The animals were prepared for experiments by unilateral renal denervation and surgical division of the bladder to form two hemibladders enabling separate urine collection from two kidneys. The mean urine flow was 6% higher for the denervated kidney (not significant) while mean differences for osmolar clearance (+ 13%), sodium excretion (+21%) and GFT (+5%) were all significant (P less than 0.05). When corrected to 100 ml GFR, sodium excretion was not significantly higher for the denervated kidney. In most experiments higher sodium excretion on the denefvated side was associated with higher GFR. Thus, contrary to some earlier views, a slight increase in the excretory function which follows denervation of the kidney is demonstrable also in conscious undisturbed animals. The data suggest that increased haemodynamics of the denervated kidney are responsible for higher excretion, but do not exclude a contribution of inhibited tubular reabsorption.  相似文献   

3.
Regulation of arterial pressure: role of pressure natriuresis and diuresis   总被引:2,自引:0,他引:2  
The importance of the renal pressure natriuresis and diuresis mechanisms in long-term control of body fluid volumes and arterial pressure has been controversial and difficult to quantitate experimentally. Recent studies, however, have demonstrated that in several forms of chronic hypertension caused by aldosterone, angiotensin II (AngII), vasopressin, or norepinephrine and adrenocorticotropin, increased renal arterial pressure is essential for maintaining normal excretion of sodium and water in the face of reduced renal excretory capability. When renal arterial pressure was servo-controlled in these models of hypertension, sodium and water retention continued unabated, causing ascites, pulmonary edema, or even complete circulatory collapse within a few days. Apparently, other mechanisms for volume homeostasis, such as the various natriuretic and diuretic factors that have been postulated, are not sufficiently powerful to maintain fluid balance in the absence of increased renal arterial pressure when renal excretory function is reduced in these forms of hypertension. The intrarenal mechanisms responsible for pressure natriuresis and diuresis are not entirely clear, but they seem to involve small increases in glomerular filtration rate and filtered load as well as reductions in fractional reabsorption in proximal and distal tubules. During chronic disturbances of arterial pressure additional factors, especially changes in AngII and aldosterone formation, act to amplify the effectiveness of the basic renal pressure natriuresis and diuresis mechanisms in regulating arterial pressure and body fluid volumes.  相似文献   

4.
The effect of unilateral renal sympathectomy on renal excretion of water and sodium was studied in three groups of Inactin-anaesthetized rats: 1-3, 4-19, and 20-35 weeks after denervation. Increased sodium excretion from the denervated kidney in the absence of changes in GFR was observed up to 35 weeks following renal denervation. Thus, in a functional sense, renal reinnervation may have only been partial during the time interval studied.  相似文献   

5.
6.
This study was designed to determine to what extent nitric oxide (NO) mediates the natriuretic and diuretic responses to acute isotonic saline (0.9 gram % NaCl) volume expansion (SVE, 0.5 ml min-1 kg-1). Studies were performed on 49 pentobarbital anesthetized (65 mg/kg) female Sprague-Dawley rats with or without a NO synthase inhibitor, Nomega-nitro-L-arginine (LNA). Group 1 received saline at 27 microliter/min for 1 hr (baseline) and then SVE for 1 hr; Groups 2-4 received LNA at 10, 150, and 200 microgram kg-1 min-1, respectively, for 1 hr followed by LNA + SVE. To determine to what extent inhibition of NOS would reverse an ongoing SVE-induced natriuresis and diuresis, Group 5 was saline-volume-expanded for hours 1 and 2 whereas Group 6 was administered SVE during the first hour and then SVE + 150 microgram kg -1 min-1 LNA during the second hour. SVE caused a significant (P < 0.05) increase in the glomerular filtration rate (GFR) of Group 1 and the LNA-treated rats (Groups 2-4). This SVE-induced increase in the GFR occurred despite the fact that baseline GFR was significantly lower in the two groups of rats that were infused with the highest doses of LNA (Groups 3-4). SVE was also associated with similar increases in urine flow rate, sodium and potassium excretion, and total osmolar excretion in Groups 1-4. On the other hand, mean arterial pressure (MAP) was significantly higher in Group 2 during SVE + LNA and during the baseline as well as during the SVE periods in Groups 3-4; MAP was also significantly elevated in Group 6 during SVE + LNA. Thus, despite the fact that MAP was higher in LNA-treated rats, sodium and urine flow rates were the same as in Group 1 (i.e., there was no evidence of a pressure natriuresis or diuresis in these animals). Along these lines, there was a small but significant positive linear correlation coefficient (r = 0.41, P = 0.05) between sodium excretion values and corresponding MAP values in SVE control rats but not in Groups 3-4 during SVE (r = 0.28, P = 0.26). The current data demonstrate that 1) NO does not mediate SVE-induced hyperfiltration in the rat, 2) NO also does not mediate SVE-induced natriuresis or diuresis, and 3), consistent with other reports, NO appears to mediate pressure natriuresis and diuresis.  相似文献   

7.
在室旁核(PVN)假损毁兔与PVN损毁兔血量扩张(VE)引起尿流量增加,峰值分别为0.59±0.09与0.31±0.03 ml/min (P<0.01),排钠量增加峰值分别为66.76±6.74与36.05±3.44μmol/min (P<0.01),而在PVN假损毁兔与PVN完好兔对VE的反应无显著差别(P>0.05),表明PVN损伤可明显减弱 VE 引起的促钠排泄与利尿效应.颈迷走神经切断并不能改变 PVN损伤的上述作用.双侧肾神经切断兔损毁 PVN对VE引起促钠排泄效应无显著影响,但显著减弱其利尿效应 (P<0.02).PVN损毁对VE时肾小球滤过率(GFR)与肾血浆流量(RPF)无显著影响.结果表明PVN参与VE通过迷走传入神经引起促钠排泄与利尿反应的调节,而肾交感传出神经参与其中促钠排泄的作用.  相似文献   

8.
兔室旁核对血量扩张引起促纳排泄与利尿的作用   总被引:2,自引:0,他引:2  
Zhang B  Lin MZ  Han GC 《生理学报》2000,52(1):75-80
在室旁核 (PVN)假损毁兔与PVN损毁兔血量扩张 (VE)引起尿流量增加 ,峰值分别为 0 5 9± 0 0 9与0 3 1± 0 0 3ml/min (P <0 0 1) ,排钠量增加峰值分别为 66 76± 6 74与 3 6 0 5± 3 4 4μmol/min (P <0 0 1) ,而在PVN假损毁兔与PVN完好兔对VE的反应无显著差别 (P >0 0 5 ) ,表明PVN损伤可明显减弱VE引起的促钠排泄与利尿效应。颈迷走神经切断并不能改变PVN损伤的上述作用。双侧肾神经切断兔损毁PVN对VE引起促钠排泄效应无显著影响 ,但显著减弱其利尿效应 (P <0 0 2 )。PVN损毁对VE时肾小球滤过率 (GFR)与肾血浆流量 (RPF)无显著影响。结果表明PVN参与VE通过迷走传入神经引起促钠排泄与利尿反应的调节 ,而肾交感传出神经参与其中促钠排泄的作用  相似文献   

9.
Intrahepatic arteries are richly innervated by both adrenergic and sensory vanilloid-sensitive (capsaicin-sensitive) fibers. Stimulation of capsaicin sensitive fibers has been shown to dilate the intrahepatic vessels by both releasing sensory neuropeptides and by modulating the adrenergic tone. However the participation of capsaicin-sensitive fibers in the mediation of the hepatic artery buffer response (HABR) has not been investigated yet. To explore the involvement of sensory innervation and sensory neuropeptides in the HABR, the experiments were performed on capsaicin-denervated Wistar rats. In addition, we used selective CGRP and tachykinin receptor antagonists to test the participation of CGRP, substance P and NK-A in HABR in the rat. In anesthetized rats the hepatic artery blood flow (HABF), microcirculatory hepatic blood flow (HBF) and portal blood flow (PBF) were determined. The HABR was induced by partial occlusion of the portal vein and maintaining the PBF at 10% of its control preocclusive value. In the control HABR the hepatic artery blood flow increased by 89% (p< 0.005) whilst the HBF at the same time decreased by 32% (p< 0.005) in comparison to preocclusive HABF and HBF values. In sensory-denervated rats the resting HBF and PBF were increased by 23% (p< 0.05) and 34% (p< 0.05), respectively in comparison to the control HBF and PBF values. In this group the induction of the HABR increased the hepatic artery blood flow by only 55% (p< 0.05), whilst the HBF was reduced by 45% (p< 0.05). Pretreatment with CGRP 8-37 (CGRP receptor antagonist) and NK-1 but not NK-2 nor NK-3 receptor antagonists significantly reduced the HABF by 43% (p< 0.05) and 25% (p< 0.05) as compared to the HABF value in the control HABR group. These findings support the hypothesis that the hepatic artery buffer response induced by reduction of the portal inflow to the liver by 90% is partially mediated by activation of capsaicin-sensitive sensory fibers in the liver, probably due to local tissue ischemia and hypoxia. The observed vasodilation in the vascular bed of the hepatic artery is due to stimulation of CGRP and NK-1 receptors.  相似文献   

10.
韩桂春  林茂樟 《生理学报》1991,43(5):464-471
The role of brain cholinergic system on diuresis and natriuresis induced by volume expansion was studied in conscious rats. In a series of experiments, the diuretic, natriuretic and kaliuretic responses induced by volume expansion were compared in three groups of conscious rats pretreated respectively with intracerebroventricular (icv) injection of artificial cerebrospinal fluid (ACSF), atropine and hexamethonium. The natriuretic, kaliuretic and diuretic responses induced by volume expansion were much less in the animals with icv injection of atropine than in the control group with injection of ACSF (P less than 0.01). While the group pretreated with icv injection of hexamethonium showed no significant decrease in these responses of volume expansion than that of the control (P greater than 0.05). Volume expansion produced no change in insulin and PAH clearance in both the atropine and the ACSF group. Thus the atropine suppressed diuresis, natriuresis and kaliuresis are independent of changes in GFR and RPF. It is inferred from the results of the present investigation that volume expansion induced diuresis and natriuresis appear to be due to inhibition of water and sodium reabsorption in the renal tubules and regulated by certain brain cholinergic system.  相似文献   

11.
The present study originates in two experimental data: circadian variations evidence of water, electrolytes and solutes urinary excretion and theophylline diuretic and salidiuretic effects knowledge; we purpose to evidence theophylline-induced water and sodium renal excretion in rats as modified by the time of drug administration. Theophylline single dose is injected in 100 animals (20 lots of 5 rats) at 8 h, 14 h, 20 h or 2 h and urines are collected during a consecutive to injection hours long period: 8 h-14 h (I), 14 h-20 h (II), 20 h-2 h (III) or 2 h-8 h (IV). Diuresis increases in + 40,4 p. cent (I), in + 123,7 p. cent (II), in + 123,3 p. cent (III) in + 65,4 p. cent (IV). So, natriuresis increases in 39,6 p. cent (I), in 223,2 p. cent (II), in 114,3 p cent (III) and in 109,6 p. cent (IV). These results evidence that theophylline diuretic and natriuretic effects change strongly with injection time, being largest if it is injected at 14 h and slightest if injected at 8 h. Such observations prompt to study if the other pharmacological properties of theophylline, especially at pulmonary level, response also with a time-dependant intensity.  相似文献   

12.
Urinary output of Na+ and K+, and volume of urine have been studied in conscious, unrestrained, water-loaded male rats following the intraseptal injection of catecholamines. Natriuresis and kaliuresis increased after injecting noradrenaline (NA), the intensity being dose related. The dose-response curve suggests that a monomolecular interacting takes place between NA and pharmacological receptors present in the septal area. No change was observed in diuresis. Systematic mapping of the septal area yielded about the same results for all sites except a zone located in the lateral nucleus that was more sensitive. An alpha blocker (dibenamine), injected intraseptally before NA, showed an inhibitory effect while a beta blocker (propranolol) yielded a potentiation effect. These same effects of the blocking agents were observed when adrenaline was used instead of NA. Lidocaine, which inhibits the re-uptake of NA, showed an enhancement of the natriuretic and kaliuretic effect of NA, and the same effect was observed when the enzymatic destruction of NA was prevented by nialamide, an inhibitor of monoaminoxidase. Dopamine showed a natriuretic effect, but no effect was observed on K+ and urine output. Serotonin had no action on natriuresis, kaliuresis and diuresis.  相似文献   

13.
ABSTRACT

Transient receptor potential vanilloid 1 (TRPV1), a nociceptive cation channel, is known to play roles in regulating the energy metabolism (EM) of the whole body. We previously reported that TRPV1 antagonists such as AMG517 enhanced EM in mice, however, these mechanisms remain unclear. The aim of this study was to explore the mechanisms underlying the enhancement of EM by AMG517, a selective TRPV1 antagonist, in mice. Respiratory gas analysis indicated that intragastric administration of AMG517 enhanced EM along with increasing locomotor activity in mice. Next, to clarify the possible involvement with afferent sensory nerves, including the vagus, we desensitized the capsaicin-sensitive sensory nerves of mice by systemic capsaicin treatment. In the desensitized mice, intragastric administration of AMG517 did not change EM and locomotor activity. Therefore, this study indicated that intragastric administration of AMG517 enhanced EM and increased locomotor activity via capsaicin-sensitive sensory nerves, including vagal afferents in mice.  相似文献   

14.
It was hypothesized that renal sympathetic nerve activity (RSNA) and neuronal nitric oxide synthase (nNOS) are involved in the acute inhibition of renin secretion and the natriuresis following slow NaCl loading (NaLoad) and that RSNA participates in the regulation of arterial blood pressure (MABP). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages, and acutely during anesthesia. NaLoad was performed over 2 h by intravenous infusion of hypertonic solution (50 micromol.min(-1).kg body mass(-1)) at constant body volume conditions. SMTC was coinfused in amounts (20 microg.min(-1).kg(-1)) reported to selectively inhibit nNOS. Directly measured MABPs of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P < 0.005). Plasma renin concentration (PRC) was reduced by renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P < 0.005) and by nNOS inhibition (12.4 +/- 2.3 vs. 19.6 +/- 1.6 mlU/l, P < 0.005). NaLoad reduced PRC (P < 0.05) and elevated MABP modestly (P < 0.05) and increased sodium excretion six-fold, irrespective of renal denervation and SMTC. The metabolic data demonstrated that renal denervation lowered sodium balance during the first days after denervation (P < 0.001). These data show that renal denervation decreases MABP and renin secretion. However, neither renal denervation nor nNOS inhibition affects either the renin down-regulation or the natriuretic response to acute sodium loading. Acute sodium-driven renin regulation seems independent of RSNA and nNOS under the present conditions.  相似文献   

15.
16.
17.
18.
The objective of this study was to determine the effect of N(G)-monomethyl-L-arginine (L-NMMA) infusion on plasma renin activity (PRA) in the presence or absence of the renal nerves in normotensive Wistar-Kyoto (WKY) rats and Okamoto spontaneously hypertensive rats (SHR). All rats were unilaterally nephrectomized two weeks before the acute experiment. On the day of the experiment, acute renal denervation (Dnx) of the remaining kidney was performed in one group of WKY rats (Dnx-WKY; n= 10) and one group of SHRs (Dnx-SHR: n=7). The renal nerves were left intact in a group of WKY rats (Inn-WKY; n=8) and SHRs (Inn-SHR; n=9). After a control clearance period, L-NMMA was administered i.v. (15 mg/kg bolus followed by 500 microg/kg/min infusion) and another clearance period of 20 min was taken. In all experimental groups L-NMMA infusion resulted in a significant natriuresis. L-NMMA infusion increased fractional excretion of sodium (FE(Na)) to a greater extent in the Inn-SHR than in the Inn-WKY (delta FE(Na) = 5.23+/-0.87% vs delta FE(Na) = 2.87+/-0.73% respectively; P=0.05), PRA did not change in the SHR with the infusion of L-NMMA. However, in the Inn-WKY group, the natriuresis of L-NMMA infusion was associated with a tendency for lower PRA levels as compared to a group of time control Inn-WKY rats. In Dnx-WKY, the natriuresis of L-NMMA infusion (delta FE(Na) = 4.60+/-0.52%) was associated with a significantly lower level of PRA (4.26+/-1.18 ng AI/ml/hr) as compared to a group of time control Dnx-WKY rats (9.83+/-1.32 ng AI/ml/hr; P<0.05). In the Dnx-SHR, the natriuretic response to L-NMMA infusion was significantly attenuated by renal denervation (delta FE(Na) = 2.36+/-0.34%) and PRA was unchanged. In conclusion, the natriuretic effect of systemic inhibition of nitric oxide (NO) synthesis was associated with decreased PRA in the Dnx-WKY suggesting that a potential interaction exists between NO and the renal nerves in the modulation of PRA in the normotensive WKY rat. Whereas, the natriuretic effect of L-NMMA infusion in the SHR in the presence and absence of the renal nerves, were independent of changes in PRA.  相似文献   

19.
Cell-to-cell communication via gap junctions has been proposed to be involved in the metabolic actions of sympathetic liver nerves in the rat. The effects of hepatic nerve stimulation and noradrenaline-, PGF2 alpha- and glucagon infusion on glucose metabolism and perfusion flow were studied in perfused rat liver in the absence and presence of the gap junctional inhibitors, heptanol, carbenoxolone and (4 beta)phorbol 12-myristate 13-acetate (4 beta PMA). (i) Stimulation of the hepatic nerve plexus increased glucose output, decreased flow and caused an overflow of noradrenaline into the hepatic vein. (ii) Heptanol completely inhibited not only the nerve stimulation-dependent metabolic and hemodynamic alterations but also the noradrenaline overflow. Thus the heptanol-dependent inhibitions were caused primarily by a strong impairment of transmitter release. (iii) Carbenoxolone inhibited the effects of neurostimulation on glucose metabolism partially by about 50%, whereas it left perfusion flow and noradrenaline overflow essentially unaltered. (iv) 4 beta PMA reduced the nerve stimulation-dependent enhancement of glucose release by about 80% but the noradrenaline-dependent increase in glucose output only by about 30%; the increase in glucose release by PGF2 alpha and by glucagon remained essentially unaltered. 4 beta PMA reduced the nerve stimulation-dependent decrease in portal flow by about 35% but did not affect the noradrenaline-and PGF2 alpha-elicited alterations, nor did it alter noradrenaline overflow. The results allow the conclusion that gap junctional communication plays a major role in the regulation of hepatic carbohydrate metabolism by sympathetic liver nerves, but not by circulating noradrenaline, PGF2 alpha or glucagon.  相似文献   

20.
Material exhibiting immunoreactivity for substance P in enteric nerves, obtained from the myenteric plexus of the guinea pig small intestine, and in the peripheral ends of sensory nerves of the ureter, atrium and superior mesenteric artery, was characterized by separation by high pressure liquid chromatography, and quantified by radioimmunoassay of fractions collected from the chromatograph. Capsaicin, which depletes substance P-like immunoreactivity from sensory, but not from other substance P-containing nerves, reduced the content of substance P-like immunoreactivity in ureter, atrium and superior mesenteric artery by more than 99.5%, whereas the reduction in immunoreactive material in the myenteric plexus was less than 10%. Separation of extracts of myenteric plexus, ureter and atrium on a reversed-phase column gave major peaks corresponding to authentic substance P and minor peaks that coeluted with oxidized substance P. If the extracts were oxidized with hydrogen peroxide before chromatography, all the immunoreactivity was found in the peak corresponding to oxidized substance P. In the superior mesenteric artery extracts, in addition to the components corresponding to substance P and its oxidized derivative, there was a small intermediate peak that has yet to be identified. Physalaemin, which has been suggested to be present in mammalian nerves, was not detectable in any of the extracts. It is concluded that both enteric nerves and the peripheral processes of sensory nerves which show immunoreactivity for substance P in this species contain the authentic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号