首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advancements at the Linac Coherent Light Source X-ray free-electron laser (XFEL) enabling successful serial femtosecond diffraction experiments using nanometre-sized crystals (NCs) have opened up the possibility of X-ray structure determination of proteins that produce only submicrometre crystals such as many membrane proteins. Careful crystal pre-characterization including compatibility testing of the sample delivery method is essential to ensure efficient use of the limited beamtime available at XFEL sources. This work demonstrates the utility of transmission electron microscopy for detecting and evaluating NCs within the carrier solutions of liquid injectors. The diffraction quality of these crystals may be assessed by examining the crystal lattice and by calculating the fast Fourier transform of the image. Injector reservoir solutions, as well as solutions collected post-injection, were evaluated for three types of protein NCs (i) the membrane protein PTHR1, (ii) the multi-protein complex Pol II-GFP and (iii) the soluble protein lysozyme. Our results indicate that the concentration and diffraction quality of NCs, particularly those with high solvent content and sensitivity to mechanical manipulation may be affected by the delivery process.  相似文献   

2.
Water-containing biological material cannot withstand the vacuum of the transmission electron microscope. The classical solution to this problem has been to dehydrate chemically fixed biological samples and then embed them in resin. During such treatment, the bacterial nucleoid is especially prone to aggregation, which affects its global shape and fine structure. Initial attempts to deal with aggregation by optimizing chemical fixation yielded contradictory results. Two decades ago, the situation improved with the introduction of freeze-substitution. This method is based on dehydration of unfixed cryo-immobilized samples at low temperature, which substantially reduces aggregation. As a result, the global shape of the nucleoid can be fairly well defined. Overall, in actively growing bacteria, the nucleoids are dispersed and "coralline" but become more confined when growth ceases. However, it is usually impossible to determine the molecular arrangement of DNA in the nucleoids of freeze-substituted bacteria because crystallization and the subsequent removal of water during substitution result in unavoidable distortions at the ultrastructural level. Recently, cryo-electron microscopy of vitreous sections has enabled the fully hydrated bacterial nucleoid to be studied close to the native state. Such studies have revealed aspects of bacterial nucleoid organization that are not preserved by freeze-substitution, including locally parallel or twisted bundles of DNA filaments, which are more frequently observed once bacterial growth has stopped, whereas in actively growing bacteria, the DNA is seen to be in a mostly disordered pattern.  相似文献   

3.
Hydropathy plot methods form a cornerstone of membrane protein research, especially in the early stages of biochemical and structural characterization. Membrane Protein Explorer (MPEx), described in this article, is a refined and versatile hydropathy‐plot software tool for analyzing membrane protein sequences. MPEx is highly interactive and facilitates the characterization and identification of favorable protein transmembrane regions using experiment‐based physical and biological hydrophobicity scales. Besides allowing the consequences of sequence mutations to be examined, it provides tools for aiding the design of membrane‐active peptides. MPEx is freely available as a Java Web Start application from our web site at http://blanco.biomol.uci.edu/mpex .  相似文献   

4.
5.
Despite impressive advances in the application of computer image analysis to cytology, many of the identification tasks that cytologists are called on to perform remain refractory to automated image analysis. The major reason is that a large fraction of these images, though simple for a human to deal with, are too complex to yield to current image analysis methodologies. It may be years before automated computer image analysis is reduced to clinical practicality. Even then, it is not clear that all cytologic image analyses will prove amenable to automation. In the meantime, semiautomatic image analysis (computer-aided microscopy) can provide a viable alternative, especially to persistently difficult image analysis problems. In semiautomatic image analysis, the onerous tasks of data acquisition--e.g., stage movement, data entry and storage--are left to the computer, while the decision-making tasks-e.g., identifying a cell's morphologic class--are left to the observer. Such a system proves to be easy and flexible to use as well as economical to build. It can also provide a reliable data base for the later evaluation of fully automated systems as they are developed. One such semiautomatic system, the Image Combining Computer Microscope (ICCM), is described, and the range of its application is illustrated. Some of the examples of ICCM applications discussed are: neuronal cell plots, three-dimensional dendrite tracking, serial section reconstruction of axons and mapping of plaques and tangles in Alzheimer's disease. They illustrate how powerful a semiautomated system can be in handling complex image analysis problems. It is suggested that semiautomated image analysis provides a viable long-range alternative to many cytologic image analysis problems.  相似文献   

6.

Backround

Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated.

Results

The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-??-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids.

Conclusions

The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.  相似文献   

7.
Tissue processed for scanning electron microscopy by ethanol-cryofracturing combined with critical point drying was embedded and sectioned for transmission electron microscopy. Study of specimens cut in a plane passing through the fracture edge indicated that preservation of cellular fine structure of fractured cells was excellent. Even at the most peripheral edge of the fracture there was no evidence that movement of cytoplasmic components occurred to distort the original structural organization of fractured cells. Lack of cytoplasmic detail in ethanol-cryofractographs has been due more to the nature of the fracturing of the tissue and to the obscuring effects of the metal coating than to structural deformation at the fracture edge or to limitations in resolving power of the scanning electron microscope used.  相似文献   

8.
Short interfering RNAs (siRNAs) that target viral genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, there is the potential for viral escape, particularly with a highly mutable target such as HIV-1. We present a novel strategy for anticipating and preventing viral escape using second-generation siRNAs. The evolutionary capacity of HIV-1 was tested by exerting strong selective pressure on a highly conserved sequence in the HIV-1 genome. We assayed the antiviral efficacy of five overlapping siRNAs directed against an essential region of the HIV-1 protease. Serial viral transfers in U87-CD4-CXCR4 cells were performed using four of the siRNAs. This procedure was repeated until virus breakthrough was detected. After several serial culture passages, resistant virus with a single point mutation in the targeted region was detected in the culture supernatants. The emergence of resistant virus was confirmed by molecular cloning and DNA sequencing of viral RNA. The most common escape route was the D30N mutation. Importantly, the addition of a second-generation siRNA that matched the D30N mutation restored viral inhibition and delayed development of escape variants. Passages performed with both siRNAs prevented the emergence of the D30N escape mutant and forced the virus to develop new escape routes. Thus, second-generation siRNAs can be used to block escape from RNA interference (RNAi) and to search for new RNAi escape routes. The protocol described here may be useful for exploring the sequence space available for HIV-1 evolution and for producing attenuated or deleterious viruses.  相似文献   

9.
As microbial ecologists take advantage of high-throughput analytical techniques to describe microbial communities across ever-increasing numbers of samples, the need for new analysis tools that reveal the intrinsic spatial patterns and structures of these populations is crucial. Here we present SitePainter, an interactive graphical tool that allows investigators to create or upload pictures of their study site, load diversity analyses data and display both diversity and taxonomy results in a spatial context. Features of SitePainter include: visualizing α -diversity, using taxonomic summaries; visualizing β -diversity, using results from multidimensional scaling methods; and animating relationships among microbial taxa or pathways overtime. SitePainter thus increases the visual power and ability to explore spatially explicit studies. AVAILABILITY: https://sourceforge.net/projects/sitepainter SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: antoniog@colorado.edu, Rob.Knight@colorado.edu.  相似文献   

10.
The most frequent access to the MEDLINE database of scientific abstracts is by keyword search. However, this is often not sufficient because although the user might find all the useful abstracts, these are buried in hundreds that are irrelevant. The exploratory tool XplorMed has been developed to analyse the result of any MEDLINE query. It suggests main groups of related topics and documents, sparing the user the need of reading all abstracts.  相似文献   

11.
Modern acrylics can be used over a wide temperature range (+60 degrees C to -80 degrees C) for infiltration, embedding, and polymerization. They can be used in procedures involving chemical fixation or rapid freezing. This flexibility allows for studies to be carried out upon the effects that different parameters involved in preparing biological tissue for microscopy have upon structure and retention of immunoreactivity. With most preparative methods contributions have been made to our knowledge on bacterial structure in gram-negative and gram-positive cells. The future should lie in integrating the advantages of the various methods for the purpose of advancing our understanding of bacterial structure/function.  相似文献   

12.
13.
After slow progress in the efforts to develop phase plates for electron microscopes, functional phase plate using thin carbon film has been reported recently. It permits collecting high-contrast images of close-to-life biological structures with cryo-fixation and without staining. This report reviews the state of the art for phase plates and what is innovated with them in biological electron microscopy. The extension of thin-film phase plates to the material-less type using electrostatic field or magnetic field is also addressed.  相似文献   

14.
Martinez JJ  Seveau S  Veiga E  Matsuyama S  Cossart P 《Cell》2005,123(6):1013-1023
Rickettsia conorii, a strictly intracellular and category C priority bacterial pathogen (NIAID), invades different mammalian cells. Although some signaling events involved in bacterial entry have been documented, the bacterial and host proteins mediating entry were not known. We report the identification of the Ku70 subunit of DNA-dependent protein kinase (DNA-PK) as a receptor involved in R. conorii internalization. Ku70 is recruited to R. conorii entry sites, and inhibition of Ku70 expression impairs R. conorii internalization. Bacterial invasion is dependent on the presence of cholesterol-enriched microdomains containing Ku70. R. conorii infection stimulates the ubiquitination of Ku70. In addition, the ubiquitin ligase c-Cbl is recruited to R. conorii entry foci, and downregulation of endogenous c-Cbl blocks bacterial invasion and Ku70 ubiquitination. An affinity chromatography approach identified the rickettsial protein rOmpB as a ligand for Ku70. This is the first report of a receptor-ligand interaction involved in the internalization of any rickettsial species.  相似文献   

15.
The architecture of the intact cellulosome of Clostridium thermocellum, a huge extracellular multi-polypetide bacterial enzyme complex engaged in degradation of cellulose, was investigated by electron microscopy. This was done because former electron microscopic studies aimed at elucidation of the structure of polycellulosomes and cellulosomes were restricted by the fact that data on macromolecular details could only be derived from deformed or disrupted enzyme complexes, or by application of cryo preparation and imaging techniques yielding insufficient resolution. The shape of well-preserved cellulosomes was more or less spherical, often similar to that of an olive fruit with a cavity. Therein, multiple fibrillar structures could be visualized, interpreted to be the proximal stretches of copies of the fibrillar protein Cip A ('scaffoldin'), the nonenzymatic scaffolding protein known to function as attachment site for the enzymatic subunits, as well as fibrillar parts of anchoring proteins. The enzymatic subunits were depicted to be attached, in a repetitive fashion, to the distal stretches of the Cip A proteins. The enzymatic subunits were seen, in the intact cellulosome, to form a shell-like complex substructure surrounding the cavity. Obviously, this kind of architecture makes sure that the catalytic domains of the enzymatic subunits are exposed to the environment, and, hence, to the substrate, the cellulose fibrils. Attempts were made to demonstrate the alternating occurrence of coiled domains and fibrillar stretches along the elongated protein Cip A previously characterized by sequencing, X-ray, and NMR studies. To this end, Cip A molecules, with adhering enzymatic subunits, were partially removed from their native location within the cellulosome, "stretched" by hydromechanical forces directly on the electron microscopic support film, negatively stained, and depicted by electron microscopy. The alternating occurrence of presumed coiled domains and fibrillar stretches along Cip A could be visualized, together with detached enzymatic subunits found on the support film.  相似文献   

16.
17.
The staining behaviour of vanadyl sulphate was studied using reconstituted collagen fibrils as a model system and comparing electron-optical data and collagen sequence data by a computer-aided correlation procedure. The results show that, under the conditions used, vanadyl sulphate stains both negatively and positively charged side-chains on the collagen. Other evidence suggests that vanadyl sulphate is an effective electron stain.  相似文献   

18.
Identification of proteins in 3D maps of cells is a main challenge in structural cell biology. For light microscopy (LM) clonable reagents such as green fluorescent protein represented a real revolution and equivalent reagents for transmission electron microscopy (TEM) have been pursued for a long time. To test the viability of the metal-binding protein metallothionein (MT) as a tag for TEM in cells we have studied three MT-fusion proteins in Escherichia coli: AmiC, a component of the division ring, RecA, a DNA-binding protein, and a truncated cytoplasmic form of maltose-binding protein (MBP). Proteins fused to MT were expressed in E. coli. live cells treated with gold salts were processed by fast-freezing and freeze-substitution. Small electron-dense particles were detected in sections of bacteria expressing the MT-fusion proteins and immunogold labelling confirmed that these particles were associated to the fusion proteins. The distribution of the particles correlated with the functional locations of these proteins: MBP–MT3 concentrated in the cytoplasm, AmiC-MT1 in the bacterial division ring and RecA-MT1 in the nucleoid. The electron-dense tag was easily visualized by electron tomography and in frozen-hydrated cells.  相似文献   

19.
20.
R Créton  L F Jaffe 《BioTechniques》2001,31(5):1098-100, 1102-5
Chemiluminescence has become a standard tool in biomedical research. Chemiluminescent probes are used for immunoassays, nucleic acid identification, reporter gene assays, measuring enzyme activity, and the detection of ions and small molecules such as Ca2+, ATP, NO, O2- and H2O2. Along with the development of new chemiluminescent probes, significant progress has been made in techniques to measure chemiluminescence. Ultra-sensitive photometers or luminometers have become widely available and can be obtained with automatic injectors and microplate readers. In addition, imaging photon detectors have been developed that allow the imaging of chemiluminescence from gels, blots, and microplates. Imaging photon detectors have also been attached to microscopes and allow imaging of chemiluminescent probes and reporter genes in cells and tissues. Specific methods of photon collection, storage, and analysis have been developed for microscopic imaging of chemiluminescence. Two of these methods are discussed in detail. The first is a method of data storage that allows days of continuous imaging without creating oversized files. The second is a method for calibrating photon imaging microscopes using a low-light standard. Such calibration will be helpful for comparing the performance of various photon imaging systems and for comparing data obtained in different laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号