首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional distribution of stereospecific 3H-dihydromorphine binding sites in Brattleboro rats with hereditary hypothalamic diabetes insipidus was studied. Control animals were homozygous normal Brattleboro rats and rats heterozygous for the vasopressin deficiency. Scatchard plots of 3H-dihydromorphine binding in a washed membrane preparation showed that rats with diabetes insipidus exhibited higher receptor concentrations in all assayed areas of the cerebral hemispheres. In the diencephalon, receptor concentrations were lower in diabetes insipidus rats. The results point to the existence of interactions between brain opioid systems and neurohypophyseal peptides.  相似文献   

2.
The effects of vasopressin on the short-term control of fatty acid metabolism were studied in isolated rat hepatocytes. Vasopressin increased the oxidation of oleate to CO2 and decreased the formation of ketones in hepatocytes from Wistar rats, but not from Brattleboro rats. Incubation with vasopressin for 30 min increased the conversion of oleate into triacylglycerol by 17% and 32% in hepatocytes from Wistar and Brattleboro rats respectively. The corresponding increases for the phospholipid fraction were 19% and 42%. When Wistar-rat hepatocytes were incubated with corticosterone for 6 h there was a 19% increase in triacylglycerol synthesis, and a 52% increase if vasopressin was added 30 min before the end of the incubation. Glycerol phosphate acyltransferase activity was not significantly increased by vasopressin. Incubation for 5-60 min with vasopressin increased the Vmax. of phosphatidate phosphohydrolase by 48% and 32% respectively in hepatocytes from Wistar and Brattleboro rats. These increases were antagonized if EGTA was added to the medium used for incubating the hepatocytes. The replacement of vasopressin by 5 microM-ionophore A23187 produced a significant increase of 13% in the phosphohydrolase activity. It is therefore likely that the effects of vasopressin on the phosphohydrolase are mediated by Ca2+. These results are discussed in relation to the possible function of phosphatidate phosphohydrolase in controlling the turnover of phosphoinositides, the synthesis of phosphatidylethanolamine, phosphatidylcholine and triacylglycerol, and the secretion of very-low-density lipoproteins.  相似文献   

3.
A physiological role for galanin, a 29-amino acid neuropeptide, has not been established. However, anatomical studies have demonstrated the presence of galanin in brain regions associated with the control of water balance in the rat, most notably in the paraventricular nucleus (PVN) of the hypothalamus and the neurointermediate lobe of the pituitary gland (NIL). In the PVN, galanin coexists with arginine vasopressin (AVP) in magnocellular neurons. The present study demonstrates that homozygous Brattleboro rats, which lack AVP, produce galanin. Galanin concentrations in the median eminence (ME) of the homozygous Brattleboro rat do not differ from the galanin concentrations in the ME of either heterozygous Brattleboro or Sprague-Dawley rats. However, galanin concentrations in the NIL of the homozygous Brattleboro rat were reduced by 75%. Similarly, dehydration induced by salt-loading reduced galanin concentrations in the NIL and produced transient changes in the ME. These data demonstrate that galanin concentrations are influenced by changes in fluid homeostasis and suggest that galanin may be an important component in the regulation of neurohypophyseal function and AVP secretion.  相似文献   

4.
Khegaĭ II  Popova NA  Ivanova LN 《Genetika》2006,42(7):993-995
The growth pattern of the Walker 256 solid tumor has been studied in rats with different doses of the mutant vasopressin gene. In contrast to the vasopressin gene of normal WA rats, that of mutant Brattleboro rats has a deletion in the coding region that blocks expression at the translation level. The mutation is inherited as a recessive character and is expressed in homozygous Brattleboro rats as diabetes insipidus with an increased water consumption because of the absence of vasopressin in the blood. (WAG x Brattleboro) F1 hybrids have the same normal phenotype as WAG rats, including a low water consumption. Walker 256 carcinosarcoma, which is not strain-specific, intensely grows only in WAG and (WAG x Brattleboro) F1 rats. In these groups, the growth of the tumor leads to the animal death within approximately 30 days after the inoculation of tumor cells. In Brattleboro rats, the carcinosarcoma grows less intensely: the tumor node somewhat increases only within the first two weeks, after which the tumor began to decrease and eventually disappears altogether. Both characters exhibit a 100% concordance at the individual level.  相似文献   

5.
The growth pattern of the Walker 256 solid tumor has been studied in rats with different doses of the mutant vasopressin gene. In contrast to the vasopressin gene of normal WAG rats, that of mutant Brattleboro rats has a deletion in the coding region that blocks expression at the translation level. The mutation is inherited as a recessive character and is expressed in homozygous Brattleboro rats as diabetes insipidus with an increased water consumption because of the absence of vasopressin in the blood. (WAG × Brattleboro) F1 hybrids have the same normal phenotype as WAG rats, including a low water consumption. Walker 256 carcinosarcoma, which is not strain-specific, intensely grows only in WAG and (WAG × Brattleboro) F1 rats. In these groups, the growth of the tumor leads to the animal death within approximately 30 days after the inoculation of tumor cells. In Brattleboro rats, the carcinosarcoma grows less intensely: the tumor node somewhat increases only within the first two weeks, after which the tumor began to decrease and eventually disappears altogether. Both characters exhibit a 100% concordance at the individual level.  相似文献   

6.
Six brain areas of rats and guinea-pigs, killed by microwave irradiation, were used for the concomitant measurement of the levels and regional distribution of cholinergic, biogenic amine, and amino acid neurotransmitters and metabolites. Acetylcholine (ACh) and choline (Ch) were quantified by chemiluminescence; noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites by HPLC with electrochemical detection (HPLC-EC); and six putative amino acid neurotransmitters by HPLC-EC following derivatisation. The levels and regional distribution of these transmitters and their metabolites in the rat were similar to those reported in previous studies, except that biogenic amine transmitter levels were higher and metabolite concentrations were lower. The guinea-pig showed a similar regional distribution, but the absolute levels of ACh were lower in striatum and higher in hippocampus, midbrain-hypothalamus, and medulla-pons. In all areas, the levels of Ch were higher and those of NA, 5-HT, and taurine were lower than in the rat. The most marked differences between the rat and guinea-pig were in the relative proportion of DA metabolites and 5-HT turnover, as estimated by metabolite/transmitter ratios. This study can be used as a basis for a comprehensive understanding of the central effects of drugs on the major neurotransmitter systems.  相似文献   

7.
Monoamine and amino acid content were measured in brain regions from 12 week old male, homozygous Brattleboro (DI,n=12) and Long-Evans control (LE,n=12) rats. Norepinephrine (NE) content was significantly elevated (16–25%) in the spinal cord, pons-medulla and anterior hypothalamus of DI rats when compared to LE controls. NE content of the neurointermediate lobe of pituitary in DI rats was almost twice that of LE controls. Serotonin content was also significantly elevated in the spinal cord, pons-medulla, anterior hypothalamus and forebrain of DI rats relative to the LE controls. Taurine content in DI rats was increased (31–42%) above that of LE rats in the anterior hypothalamus, striatum and forebrain. Glutamine content was also greater in DI rats than LE in the spinal cord, pons-medulla, anterior hypothalamus, striatum, hippocampus and forebrain. The changes in monoamine and amino acid content were discussed in relation to the cardiovascular and osmoregulatory deficits that are present in DI rats due to arginine vasopressin (AVP) deficiency. The possible role of AVP in modulating NE turnover was also discussed. The increase in brain TAU content in DI rats may be a physiological response to hypernatremia.  相似文献   

8.
A Dishkelov  Y Mitev  V Patchev 《Life sciences》1989,45(25):2401-2404
The incorporation of labeled precursors in phospholipids and glycolipids was studied in discrete brain areas of rats with innate vasopressin deficiency (Brattleboro, DI) and intact Long Evans animals (LE). Tracer incorporation was found to be reduced in septal, hypothalamic and hippocampal phospholipids, but enhanced in the glycolipid fraction isolated from the hypothalamus and hippocampus of Brattleboro rats. The results indicate that inherited vasopressin deficit seems to be associated with altered lipid synthesis in some brain areas of the Brattleboro rat, suggesting a probability for impaired translation of chemical signals.  相似文献   

9.
Summary The extensive distribution of exohypothalamic vasopressin or oxytocin containing nerve fibres is thought to be the anatomical basis for the involvement of these neuropeptides in central processes. Following light microscopic observations suggesting that these fibres terminate on other neurons, the present study was undertaken to demonstrate the existence of such endings in the limbic system, which is one of the main target areas for these peptides. For immunoelectron microscopy glutaraldehyde-paraformaldehyde perfused brains of male Wistar rats and Brattleboro rats, homozygous for diabetes insipidus, with and without postfixation in OsO4, were used. Post-embedding staining revealed false positive reaction product on all dense core vesicles, e.g., in the lateral septum. With pre-embedding staining, however, intense and specific reactions were observed for both vasopressin and oxytocin at their sites of production, as well as the neurohypophysis and in the extrahypothalamic limbic brain regions.In the lateral septum and habenular nucleus only vasopressin-containing synapses could be demonstrated, while in the medial nucleus of the amygdala synapses containing either vasopressin or oxytocin were observed. These peptide containing synapses do not seem to differ in any fundamental way from the classical transmitter-containing synapses in the brain.Supported by the Foundation for Medical Research FUNGOThe authors wish to thank Prof. Dr. A.H.M. Lohman for having made the vibratome available, and Miss C. de Raay for her expert technical assistance  相似文献   

10.
Abstract: Administration of l -DOPA (50 mg/kg) elicits a significant increase in extracellular dopamine in striata of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine but not in striata of intact rats. To assess the role of dopaminergic nerve terminals in determining the effects of exogenous l -DOPA on extracellular dopamine levels in striatum, we examined the relative contributions of monoamine oxidase A and monoamine oxidase B to the catabolism of dopamine synthesized from exogenous l -DOPA. Extracellular concentrations of dopamine and its catabolite, 3,4-dihydroxyphenylacetic acid, were monitored with in vivo dialysis in striata of intact rats and of rats with unilateral 6-hydroxydopamine lesions of striatal dopamine. Clorgyline (2 mg/kg), an inhibitor of monoamine oxidase A, significantly increased dopamine and decreased 3,4-dihydroxyphenylacetic acid in intact but not in dopamine-depleted striata. Inhibition of monoamine oxidase B with either l -deprenyl (1 mg/kg) or Ro 19-6327 (1 mg/kg) did not significantly affect dopamine or 3,4-dihydroxyphenylacetic acid in striata of intact or dopamine-depleted rats. In intact rats, administration of clorgyline in conjunction with l -DOPA produced a >20-fold increase in dopamine and prevented the l -DOPA-induced increase in 3,4-dihydroxyphenylacetic acid. Although both l -deprenyl and Ro 19-6327 administered in combination with l -DOPA elicited a small but significant increase in dopamine, levels of 3,4-dihydroxyphenylacetic acid were not affected. In rats pretreated with 6-hydroxydopamine, clorgyline had no significant effect on the increases in dopamine and 3,4-dihydroxyphenylacetic acid elicited by l -DOPA. Furthermore, neither l -deprenyl nor Ro 19-6327 affected l -DOPA-induced increases in dopamine and 3,4-dihydroxyphenylacetic acid in dopamine-depleted striata. The present findings indicate that deamination by monoamine oxidase A is the primary mechanism for catabolism of striatal dopamine, both under basal conditions and after administration of exogenous l -DOPA. Loss of dopaminergic terminals eliminates this action of monoamine oxidase A but does not enhance deamination by monoamine oxidase B. These data support a model in which exogenous l -DOPA elicits enhanced extracellular accumulation of dopamine in the dopamine-depleted striatum because some transmitter synthesis occurs at nondopaminergic sites and the dopamine terminals that normally take up and catabolize this pool of transmitter are absent.  相似文献   

11.
Summary CP-14, a tetradecapeptide from the predicted mutant vasopressin precursor in the homozygous Brattleboro rat was detected immunocytochemically in the supraoptic nucleus of homozygous Brattleboro but not normal rats. The staining was localized to the periphery of the perikarya. CP-14 immunoreactivity was not found in the neural lobes, paraventricular nuclei, accessory nuclei or suprachiasmatic nuclei of either homozygous Brattleboro or normal rats. Vasopressin immunoreactivity was found in the neural lobe and in the perinuclear region of neurons of the supraoptic, paraventricular, suprachiasmatic and accessory nuclei of normal rats. Vasopressin immunoreactivity was also found in homozygous Brattleboro rats, mainly in the ventral part of the supraoptic nucleus: densely stained solitary cells were found amongst other faintly stained perikarya. In both cell-types the staining was mainly in the periphery of the perikarya. No vasopressin immunoreactivity was detected in the paraventricular nuclei, suprachiasmatic nuclei, accessory nuclei or neural lobe of homozygous Brattleboro rats.CP-14 and vasopressin immunoreactivities were found to be co-localized; both were present in the periphery of the same perikarya of the supraoptic nuclei of homozygous Brattleboro rats. Differential staining was found with antioxytocin serum in both normal rats and homozygous Brattleboro rats: separate neurons were stained for either oxytocin or vasopressin and CP-14. Immunoreactive oxytocin was found mainly in the perinuclear region of the neurons from the supraoptic, paraventricular and accessory nuclei.  相似文献   

12.
The local cerebral glucose utilization (LCGU) was measured in 63 different cortical areas and nuclei of the telencephalon, diencephalon and rhombencephalon of young adult (3 to 4-month-old) rats and of 27-month-old Wistar rats, in which learning impairments had been proven by a water maze test. The LCGU was determined by [14C]2-deoxyglucose autoradiography. In the old rats the mean LCGU of all brain regions was significantly reduced by about 10% compared with the young control group; the mean LCGU was 74.2 mumol glucose/(100 g x min) in the young and 66.7 in the old rats. Different degrees of LCGU decrease were found in the different regions. Most of the brain regions with significantly reduced LCGU values in the aged, learning impaired rats were associated with auditory and visual functions, the dopaminergic system, and structures known to be involved in learning and memory processes. Therefore, the regional pattern of LCGU reduction found in the aged, learning impaired rats did not resemble any known pattern found after lesions of a single transmitter system or systemic administration of transmitter agonists or antagonists.  相似文献   

13.
In renal collecting ducts, vasopressin increases the expression of and redistributes aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane, leading to urine concentration. However, basolateral membrane expression of AQP2, in addition to AQP3 and AQP4, is often detected in inner medullary principal cells in vivo. Here, potential mechanisms that regulate apical versus basolateral targeting of AQP2 were examined. The lack of AQP2-4 association into heterotetramers and the complete apical expression of AQP2 when highly expressed in Madin-Darby canine kidney cells indicated that neither heterotetramerization of AQP2 with AQP3 and/or AQP4, nor high expression levels of AQP2 explained the basolateral AQP2 localization. However, long term hypertonicity, a feature of the inner medullary interstitium, resulted in an insertion of AQP2 into the basolateral membrane of Madin-Darby canine kidney cells after acute forskolin stimulation. Similarly, a marked insertion of AQP2 into the basolateral membrane of principal cells was observed in the distal inner medulla from normal rats and Brattleboro rats after acute vasopressin treatment of tissue slices that had been chronically treated with vasopressin to increase interstitial osmolality in the medulla, but not in tissues from vasopressin-deficient Brattleboro rats. These data reveal for the first time that chronic hypertonicity can program cells in vitro and in vivo to change the insertion of a protein into the basolateral membrane instead of the apical membrane.  相似文献   

14.
The effect on water intake, urine flow and vasopressin release of intracranial injections of substance P, physalaemin and eledoisin was studied in Wistar and Brattleboro, homozygous and heterozygous, rats. The tachykinins strongly inhibited water intake both in Wistar and in Brattleboro, homozygous and heterozygous, rats. Physalaemin and eledoisin reduced urine flow in Wistar and heterozygous, but not in homozygous, Brattleboro rats. Substance P never affected urine elimination. Physalaemin and eledoisin produced a dose-dependent, long lasting release of vasopressin in Wistar rats. Substance P did not affect the release of vasopressin. The results suggest that both substance P and physalaemin could influence brain mechanisms which control water intake, acting as thirst inhibitors, and that physalaemin could also participate in body fluid control by conserving water through vasopressin release.  相似文献   

15.
THE EFFECT OF INJURY ON MONOAMINE CONCENTRATIONS IN THE RAT HYPOTHALAMUS   总被引:2,自引:0,他引:2  
Abstract— The monoamine concentrations have been measured in four regions of the brain (hypothalamus, cortex, cerebellum and brain stem) in rats injured by either hind-limb ischaemia or scald. Both injuries produced a rapid fall in the noradrenaline concentration of the hypothalamus which recovered slowly if the injury was not fatal. This effect of injury was seen after pretreatment with a-methyl-p-tyrosine to inhibit noradrenaline synthesis, indicating an increased rate of utilization of noradrenaline after injury. These injuries did not affect the 5-hydroxytryptamine concentration in the hypothalamus, but changes were found in the concentration of this monoamine and in that of its metabolite, 5-hydroxyindole acetic acid, in the brain stem. It is concluded that these forms of injury had specific effects on the brain monoamines. The hypothalamic changes were not secondary to changes in core temperature or to hypotension or hypovolaemia and they are discussed in relation to the impairment of temperature regulation seen in the injured rat.  相似文献   

16.
The hypothesis that the effects of ACTH 4-10 on avoidance are mediated via the release of endogenous vasopressin was investigated. To test this hypothesis, we observed the effect of ACTH 4-10 on the passive avoidance of Brattleboro rats with diabetes insipidus resulting from a total genetic deficiency of vasopressin (DI) and Brattleboro rats without diabetes insipidus (HE). Normal Long-Evans rats (LE) were also included for comparison purposes. The results did not support the hypothesis. ACTH 4-10 did influence the passive avoidance of DI rats; this should not have occurred if the release of endogenous vasopressin is necessary for ACTH 4-10 to influence avoidance.  相似文献   

17.
The role of blood volume regulatory mechanisms located in the low pressure system in the control of urinary excretion was studied using hypobaric pressure breathing in normal and diabetes insipidus (Brattleboro strain with a congenital lack of vasopressin) rats. Rats were placed in an altitude simulator chamber for 4 h. A pump maintained pressure reduced to 701, 577 and 472 mbar simulating respectively altitude of 3,000, 4,500 and 6,000 m. In normal rats, hypobaric breathing induced an increase in urine flow, urinary urea and K+ excretion and urinary pH but did not significantly modify creatinine and Na+ excretion. In diabetes insipidus rats, hypobaric breathing produced oliguria and an decrease in urea, creatinine, Na+, K+, Cl- urinary excretions. Since acute hypobaric pressure breathing induced opposed effects in normal and Brattleboro rats, it is suggested that this kind of experimental procedure which increases intrathoracic blood volume elicits a diuretic response through an inhibition of vasopressin release. These experiments confirm the main role of vasopressin in the control of central blood volume.  相似文献   

18.
The pituitary neural lobe of homozygous Brattleboro rats has high rates of glucose utilization not affected by chronic treatment with exogenous vasopressin, despite attenuation of polydipsia and polyuria. We evaluated whether this effect may result from the inability of vasopressin to affect the hypothalamo-neurohypophysial metabolism or from the development of resistance to chronic vasopressin treatment. We used the [14C]deoxyglucose method to compare 28-h effects of vasopressin treatment (5 U/kg, i.m., twice a day) with that of desmopressin (100 micrograms/kg, i.p., once a day), a long-lasting antidiuretic hormone, on glucose utilization of the hypothalamo-neurohypophysial system and related structures in conscious homozygous Brattleboro rats. Vasopressin and desmopressin reduced water intake, plasma osmolality and plasma Na+ concentration similarly. Vasopressin decreased glucose utilization in the supraoptic nucleus, subfornical organ and median preoptic nucleus, but did not alter activity in the paraventricular nucleus and neural lobe. Desmopressin decreased glucose utilization in all these structures. The results indicate that desmopressin has a more potent inhibitory action on the hypothalamo-neurohypophysial system than vasopressin over this short duration of treatment. The lack of response in the neural lobe from chronic treatment with vasopressin seems to be due to its inability to affect the paraventricular nucleus metabolism. The maintenance of metabolic activity in the paraventricular nucleus of vasopressin-treated Brattleboro rats suggests that this structure contributes importantly to the metabolism of neural lobe.  相似文献   

19.
We applied [14C]deoxyglucose autoradiography and imaging techniques to determine rates of glucose metabolism in distinct subdivisions of the subfornical organ (SFO) of conscious Brattleboro rats. Seven anatomically-defineD SFO subregions were discerned having metabolic activities that differed from one another by as much as 29% in water-sated Brattleboro rats. The highest metabolic activity was found in the ventromedial zone of central and caudal subregions where previous studies identified the greatest densities of neurons, capillaries, putative angiotensin receptors, and angiotensin-immunoreactive fibers. Homozygous Brattleboro rats had rates of glucose metabolism that were 39-68% greater than those in corresponding SFO subregions of Long-Evans rats; these differences were accentuated by about 50% following 18 h of water deprivation. Exogenous treatment of Brattleboro rats with vasopressin uniformly normalized subregional glucose metabolism in the SFO. In Sprague-Dawley rats, water deprivation over 120 h provoked greater increases in metabolism of ventromedial than of dorsolateral SFO zones in amounts similar to the differences between Long-Evans and Brattleboro rats. The findings identify focal areas of high metabolic activity within subregions of the SFO where central responses are likely initiated to defend against homeostatic disturbances. The data represent further evidence for the probability that angiotensin II, as both hormone and neurotransmitter, is a metabolic stimulant of its target cells in the nervous system.  相似文献   

20.
Summary By use of an antibody against the 14 amino acids in the mutated vasopressin precursor (CP-14) characteristic of the homozygous Brattleboro rat, an immunohisto- and-cytochemical study was performed on the supraoptic nuclei of homozygous Brattleboro rats. At the light-microscopic level, varying numbers of perikarya per section exhibited a positive reaction. The most intense staining was observed in a patchy manner on the peripheral portions of the cytoplasm, its central portion being stained less intensely. The antiserum did not react with the supraoptic perikarya of the Wistar rat. In the homozygous Brattleboro rat, antibodies against normal vasopressin only rarely resulted in a positive immunoreaction. However, when it was observed, incubation of the subsequent section with CP-14-antiserum suggested a co-localization of both peptides in the same perikaryon. At the ultrastructural level, CP-14 immunoreactivity was demonstrated on the secretory cisternae of the Golgi apparatus, on lysosome-like bodies and on parts of the rough endoplasmic reticulum. With the use of an antibody against normal vasopressin, immunoreactivity was confined to very limited areas of the rough endoplasmic reticulum. The oxytocin immunoreactivity in supraoptic perikarya of Brattleboro rats did not differ from that in the Wistar rat, either at the light- or at the electron-microscopic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号