首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feeding of ethanol in a liquid diet to male Wistar rats caused decreases in the hepatic cytosolic and mitochondrial [NAD+]/[NADH] ratios. This redox-state change was attenuated after 16 days of feeding ethanol as 36% of the total energy intake. Supplementation of the ethanol-containing liquid diet with Methylene Blue largely prevented the ethanol-induced redox state changes, but did not significantly decrease the severity of the hepatic lipid accumulation that resulted from ethanol ingestion. Methylene Blue did not affect body-weight gain, ethanol intake or serum ethanol concentrations in ethanol-fed rats, nor did the compound influence the hepatic redox state or liver lipid content of appropriate pair-fed control animals. These findings suggest that the altered hepatic redox state that results from ethanol oxidation is not primarily responsible for the production of fatty liver after long-term ethanol feeding in the rat.  相似文献   

2.
H Kono  M Fujii  T Sokabe  J Kaneshige 《Enzyme》1979,24(3):142-151
To study the effects of ethanol on liver chronically injured by CCl4, activities of hepatic enzymes related to ethanol oxidation, influences of ethanol on hepatic metabolites, and blood ethanol disappearance were observed. (1) Activities of alcohol dehydrogenase, low- and high-Km aldehyde dehydrogenase, microsomal ethanol-oxidizing system and drug-metabolizing enzyme were remarkably decreased in the injured liver. (2) Increases in lactate/pyruvate and beta-hydroxybutyrate/acetacetate ratios were shown in control liver 2 h after ethanol ingestion. Similar but less pronounced effects of ethanol on the 'redox state' were also seen in rats with chronic liver injury. (3) Delay in ethanol disappearance was not observed until 12 h after ethanol ingestion. The ethanol-induced changes in the redox state in the injured liver were similar to those in controls. Higher ethanol concentrations in blood from rats with chronic liver injury could be related to potentiate the injured liver.  相似文献   

3.
S U Aliyu  L Upahi 《Life sciences》1988,43(4):345-356
The role of acute ethanol (2.5 g/kg i.p.) and phenylethylamine (100 mg/kg i.p.) on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behaviour were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver whilst at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioural indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals. The results suggest that some of the toxic actions of ethanol in rats may be mediated through the activation of monoamine oxidase type B, with the consequent depletion of the endogenous levels of phenylethylamine. The data appear to support the concept of phenylethylamine involvement in affective disorders.  相似文献   

4.
《Cellular signalling》2014,26(2):295-305
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.  相似文献   

5.
Chronic exposure to ethanol results in heterologous desensitization of receptors coupled to adenylyl cyclase via Gs, the stimulatory guanine nucleotide regulatory protein. Ethanol-induced accumulation of extracellular adenosine is required for the development of heterologous desensitization (Nagy, L. E., Diamond, I., Collier, K., Lopez, L., Ullman, B., and Gordon, A. S., Mol. Pharmacol., in press). To understand the mechanism underlying ethanol-induced increases in extracellular adenosine, we examined the interaction of ethanol with the adenosine transport system in S49 lymphoma cells. We found that ethanol inhibited nucleoside uptake without affecting deoxyglucose or isoleucine transport. Inhibition of adenosine uptake was due to decreased influx via the nucleoside transporter. Thus, ethanol-induced increases in extracellular adenosine appear to be due to inhibition of adenosine influx. After chronic exposure to ethanol, cells became tolerant to the acute effects of ethanol, i.e. ethanol no longer inhibited uptake. Consequently, ethanol no longer increased extracellular adenosine concentrations. Taken together with our previous studies, these results suggest that ethanol inhibition of adenosine influx leads to an increase in extracellular adenosine which causes an initial increase in intracellular cAMP levels and subsequent development of heterologous desensitization of cAMP signal transduction.  相似文献   

6.
The possibility that ethanol or acetaldehyde has a direct effect on the activity of acyl-CoA-ligases or sn-glycerophosphate acyltransferases or on the biosynthesis of phosphatidic acid and triglycerides from free fatty acids was studied with subcellular preparations from rat liver. No stimulatory effect of ethanol or acetaldehyde could be observed in any case. It was further shown that the microsomal fraction of homogenate of livers of rats treated with ethanol (single peroral dose of 4.5 g of ethanol per kg body weight) did not have an increased capacity to biosynthesize phosphatidic acid. The possibility was excluded that excess cofactors necessary for formation of phosphatidic acid are responsible for the higher accumulation of triglycerides in livers of rats treated with ethanol.The results indicate that the increased formation of triglycerides in liver of rats treated with ethanol is not due to increased activity of acyl-CoA-ligase or sn-glycerophosphate acyltransferase or due to increased availability of sn-glycerophosphate, ATP or CoA-SH. It is suggested that increased availability of fatty acids is the major explanation for the increased accumulation of triglycerides in the liver after ethanol administration.  相似文献   

7.
3 different diets that had previously been observed to cause large differences in blood acetaldehyde levels of rats administered ethanol were compared with respect to their influence on liver enzymes metabolizing alcohol, on ethanol elimination and on the ethanol-induced changes in the hepatic content of metabolites that reflect the cytosolic or the mitochondrial redox state of the nicotine-amide dinucleotide couple. The results demonstrate that an unknown dietary factor affects the activity of liver aldehyde dehydrogenase, especially that of the low-Km enzyme. It is suggested that these enzyme activity changes are reflected in the observed alterations in acetaldehyde levels, which in turn may be associated with the magnitude of the shift in the mitochondrial redox state during ethanol oxidation.  相似文献   

8.
To investigate possible gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to ethanol consumption, both female and male rats (41 days of age) were pair fed liquid diets (with a littermate of the same sex) for 28 days. The diets contained 36% of energy either as ethanol or as additional carbohydrate. After ethanol feeding, the hepatic concentration of fatty acids increased 155% in females (P less than 0.01), whereas there was only a trend for an increase (22%) in males. This was associated with a much smaller increase of cytosolic fatty acid-binding capacity in females (58%) than in males (161%). Whereas the ethanol-induced increase in fatty acid-binding capacity provided an ample excess of binding sites for the fatty acids in males, the increase in females was barely sufficient for the binding of the large increase of fatty acids produced by ethanol in the females. The cytosolic protein responsible for this binding, the liver fatty acid-binding protein of the cytosol (L-FABPc), also promotes esterification of the fatty acids. In keeping with the postulated role of this protein, the ethanol-induced increases in hepatic triacylglycerols, phospholipids, and cholesterol esters were smaller in females than in males. The gender difference in cholesterol esters was associated with parallel changes in acyl-CoA transferase activity. A possible implication of the relatively small and most likely inadequate increase in liver fatty acid-binding capacity and fatty acid esterification during alcohol consumption in the females is that under these circumstances the risk for development of a potentially deleterious accumulation of fatty acids in the liver is increased, thereby contributing to the enhanced vulnerability of females to alcohol-induced hepatotoxicity.  相似文献   

9.
Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.  相似文献   

10.
The protective effects of single dose of garlic oil (GO) on acute ethanol-induced fatty liver were investigated. Mice were treated with ethanol (4.8 g/kg bw) to induce acute fatty liver. The liver index, the serum and hepatic triglyceride (TG) levels and the histological changes were examined to evaluate the protective effects. Hepatic malondialdehyde (MDA), glutathione (GSH) levels and superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities were determined for the antioxidant capacity assay. Acute ethanol exposure resulted in the enlargement of the liver index and the increase of the serum and hepatic TG levels (P<0.01), which were dramatically attenuated by GO pretreatment in a dose-dependent manner (P<0.01). GO treatment (simultaneously with ethanol exposure) exhibited similar effects to those of pretreatment, while no obviously protective effects were displayed when it was used at 2h after ethanol intake. Histological changes were paralleled to these indices. Beside this, GO dramatically prolonged the drunken time and shortened the waking time, and these effects were superior to those of silymarin and tea polyphenol. In addition, GO dose-dependently suppressed the elevation of MDA levels, restored the GSH levels and enhanced the SOD, GR and GST activities. Compared with the ethanol group, the MDA levels decreased by 14.2% (P<0.05), 29.9% and 32.8% (P<0.01) in GO groups 50, 100 and 200 mg/kg, respectively. The GST activity increased by 9.97%, 19.94% (P<0.05) and 42.12% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively, while the GR activity increased by 28.57% (P<0.05), 37.97% (P<0.01), 50.45% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively. These data indicated that single dose of GO possessed ability to prevent acute ethanol-induced fatty liver, but may lose its capacity when used after ethanol exposure. The protective effects should be associated with its antioxidative activities.  相似文献   

11.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

12.
Isopropanol administered in a large (6 g/kg, orally) as well as in a lower dose (1 g/kg, I.P.) is slowly oxidized into acetone by the intact rat. Using two inhibitors, 3 amino-1,2,4-triazole and pyrazole, investigations on the hepatic enzymatic system involved in the oxidation of isopropanol show that catalase does not play an important part in this pathway, contrary to alcohol dehydrogenase which is the major enzyme responsible for this oxidation. Although isopropanol oxidation is mainly catalysed in the liver through alcohol dehydrogenase, no alteration of the hepatic extramitochondrial redox state occurs after the administration of a large as well as of a lower dose of isopropanol. From these experiments it may be concluded that alterations of the liver NAD+/NADH ratio, which seem to play an important part in the ethanol induced fatty liver, are not involved in the isopropanol induced one.  相似文献   

13.
This study was designed to determine whether dietary epigallocatechin-3-gallate (EGCG), the most abundant catechin polyphenol in green tea, can protect the liver from cytochrome P450 2E1 (CYP2E1)-dependent alcoholic liver damage. Compared with an ethanol group, when EGCG was present in the ethanol diet, the formation of a fatty liver was significantly reduced and the serum aspartate transaminase (AST) and alanine transaminase (ALT) levels were much lower. Ethanol treatment significantly elevated hepatic CYP2E1 expression while simultaneously reducing hepatic phospho-acetyl CoA carboxylase (p-ACC) and carnitine palmitoyl-transferase 1 (CPT-1) levels. While EGCG markedly reversed the effect of ethanol on hepatic p-ACC and CPT-1 levels, it had no effect on the ethanol-induced elevation in CYP2E1 expression. EGCG prevents ethanol-induced hepatotoxicity and inhibits the development of a fatty liver. These effects were associated with improvements in p-ACC and CPT-1 levels. The use of EGCG might be useful in treating patients with an alcoholic fatty liver.  相似文献   

14.
The ability of adenosine to modify the CNS effects of acute and chronic ethanol was studied by using theophylline, an adenosine antagonist, and dipyridamole, a blocker of adenosine reuptake. We also studied the binding characteristics of adenosine using crude membranes of whole brain. Theophylline pretreatment prior to acute ethanol administration markedly reduced the duration of ethanol-induced sleep and similarly decreased the intensity and duration of motor incoordination. In chronic ethanol treated mice the effect of theophylline on ethanol-induced hypnosis and motor incoordination was similar to the acute experiment. Dipyridamole markedly prolonged the duration of ethanol-induced hypnosis and potentiated the motor incoordination produced by acute ethanol. However, in chronic ethanol treated mice dipyridamole was not able to potentiate the motor incoordinating effect of ethanol although it was able to prolong ethanol hypnosis similar to the results obtained in the acute ethanol study. Neither drug had any effect on ethanol-induced hypothermia, in either the acute or chronic studies.After 10 days of ethanol ingestion the adenosine dissociation constant was unchanged whereas the number of brain adenosine receptors was increased 28% although the increase did not reach statistical significance. The number of the adenosine receoptors was reduced 40% at 24 and 48 h after withdrawal and returned to prewithdrawal levels at 72 h. The dissociation constant was reduced at 24 and 48 h but by 72 h had returned to prewithdrawal levels. The marked changes in adenosine binding characteristics as well as the modification of some CNS effect of ethanol by drugs which influence either adenosine binding to its receptor or the availability of adenosine suggest that adenosine may be involved in the expression of some of the CNS effects of ethanol.  相似文献   

15.
1. CoA, acetyl-CoA, long-chain acyl-CoA, carnitine, acetylcarnitine and long-chain acylcarnitine were measured in rat liver under various conditions. 2. Starvation caused an increase in the contents of these intermediates, except that of carnitine. 3. A single dose of ethanol had no effect on CoA content, whereas those of acetyl-CoA, acetylcarnitine and carnitine were increased and those of long-chain acyl-CoA and acylcarnitine were decreased. 4. Four weeks' adaptation to ethanol consumption did not change the effect of ethanol administration on these metabolites. 5. It is suggested that ethanol directly increases hepatic fatty acid synthesis and esterification. It is also suggested that this change is reversible and limited to the period of ethanol oxidation. 6. It is demonstrated that ethanol-induced triglyceride accumulation is not related to carnitine deficiency.  相似文献   

16.
Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.  相似文献   

17.
The mechanisms by which ethanol consumption causes accumulation of hepatic triacylglycerols are complex. AMP-activated protein kinase (AMPK) plays a central role in the regulation of lipid metabolism. Therefore, in the present study we investigated whether AMPK may have a role in the development of ethanol-induced fatty liver. Hepatocytes isolated from rats fed with an ethanol-containing liquid diet showed higher rates of fatty acid and triacylglycerol syntheses, but a decreased rate of fatty acid oxidation, concomitant to a lower activity of carnitine palmitoyltransferase I. Hepatocytes from both ethanol-fed and pair-fed control rats were incubated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator in intact cells. In both hepatocyte preparations AICAR strongly inhibited the activity of acetyl-CoA carboxylase in parallel to fatty acid synthesis, but cells from ethanol-fed rats showed significantly lower sensitivity to inhibition by AICAR. Moreover, AICAR strongly decreased triacylglycerol synthesis and increased fatty acid oxidation in control hepatocytes, but these effects were markedly attenuated in hepatocytes from ethanol-fed rats. In parallel, AMPK in liver of ethanol-fed rats showed a decreased specific activity and a lower sensitivity to changes in the AMP/ATP ratio, compared to the enzyme of control rats. These effects are consistent with the impairment of AMPK-mediated regulation of fatty acid metabolism after ethanol consumption, that will facilitate triacylglycerol accumulation. Taken together, these findings suggest that a decreased AMPK activity may have an important role in the development of alcoholic fatty liver.  相似文献   

18.
1. The time-course of the effects of ethanol administration on the metabolite concentrations, redox states and phosphorylation state was studied in the freeze-clamped liver of starved rats. The response was found to vary with the time after ethanol administration. 2. Administration of ethanol caused an immediate decrease in the [NAD(+)]/[NADH] ratio of both cytoplasm and mitochondria, which persisted over the 30min studied. 3. The free cytoplasmic [NADP(+)]/[NADPH] ratio in liver decreases immediately after ethanol administration but returns nearly to control values after 15min. 4. The cytoplasmic [ATP]/[ADP][HPO(4) (2-)] ratio is elevated 15min after ethanol administration in the starved rat. 5. The rapid and large changes in most metabolite concentrations measured appeared to result from the maintenance of near-equilibrium in a wide interlinked network. 6. Differences between fed and starved rats 15min after ethanol administration were slight.  相似文献   

19.
1. Liver slices from rats treated with thyroxine show an increased rate of O2 consumption. The extra consumption, but not the basal respiration, can be abolished by ouabain. 2. Dinitrophenol is not effective in increasing the rate of O2 consumption of liver slices from thyroxine-treated animals but its effectiveness can be recovered in the presence of ouabain. 3. (Na++K+)-stimulated adenosine triphosphatase activity of liver was increased by administration of thyroxine in vivo. No changes were found in total Mg2+-stimulated adenosine triphosphatase activity. 4. Mitochondrial α-glycerophosphate dehydrogenase and microsomal NADPH oxidase activity were increased by both thyroxine and chronic ethanol treatment. 5. Liver slices from animals chronically treated with ethanol synthesize urea at an increased rate. 6. Mitochondrial size (section area) is markedly increased in the liver of animals chronically treated with ethanol. 7. Acute administration of ethanol in doses of 4 and 6g/kg significantly increases the uptake of 131I-labelled thyroxine by the liver. 8. Work reported here, along with results from other investigators, indicates marked similarities between the effects produced in the liver by chronic administration of ethanol and by thyroid hormones.  相似文献   

20.
Effects of ethanol feeding on hepatic lipid synthesis   总被引:3,自引:0,他引:3  
Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipid synthesis. At the start of the experimental period the activities of acetyl-CoA carboxylase and fatty acid synthase, measured in liver homogenates, increased in the control as well as in the ethanol-fed group. After 35 days these enzyme activities were still elevated but there were no significant differences between the two groups. In hepatocytes isolated from controls as well as from ethanol-fed rats, short-term incubations with ethanol induced an increase in the rate of fatty acid synthesis and in the activities of acetyl-CoA carboxylase and fatty acid synthase. However, no alterations in the regulation of these enzymes by short-term modulators of lipogenesis were apparent in hepatocytes isolated from alcohol-treated animals. The results do not indicate a major role for the enzymes of de novo fatty acid synthesis in the development of the alcoholic fatty liver. The amount of liver triacylglycerols increased in ethanol-fed rats during the entire treatment period, whereas the hepatic levels of phosphatidylcholine and phosphatidylethanolamine were not affected by ethanol ingestion. Ethanol administration for less than 2 weeks increased the activities of phosphatidate phosphohydrolase, diacylglycerol acyltransferase, and microsomal phosphocholine cytidylyltransferase, whereas the cytosolic activity of phosphocholine cytidylyltransferase was slightly decreased. Upon prolonged ethanol administration the activities of these enzymes were slowly restored to control values after 35 days, suggesting development of some kind of adaptation. It is interesting that, although the activities of phosphatidate phosphohydrolase and diacylglycerol acyltransferase were restored to the levels found in the control rats, this effect was not accompanied by a stabilization or decrease of the concentration of hepatic triacylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号